bitcarmanlee的博客

米厂的小码农,专注数据与算法,qq群:397173819

排序:
默认
按更新时间
按访问量

神经网络的直观解释相关文档

1.http://www.hackcv.com/index.php/archives/104/ 什么是卷积神经网络?为什么它们很重要?2.https://www.zhihu.com/question/39022858 卷积神经网络工作原理直观的解释?

2017-12-24 20:39:19

阅读数:254

评论数:0

神经网络之激活函数(activation function)

1.为什么要引入非线性激活函数(activation function)如果不使用非线性激活函数,此时激活函数本质上相当于f(x)=ax+b。这种情况先,神经网络的每一层输出都是上层输入的线性函数。不难看出,不论神经网络有多少层,输出与输入都是线性关系,与没有隐层的效果是一样的,这个就是相当于是最...

2017-12-18 16:06:00

阅读数:765

评论数:0

前向传播算法(Forward propagation)与反向传播算法(Back propagation)

虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解。因此特意先对深度学习中的相关基础概念做一下总结。先看看前向传播算法(Forward propagation)与反向传播算法(Back propagation)。1.前向传播如图所示,这里讲得已经很清楚了,前向...

2017-12-16 11:45:23

阅读数:5555

评论数:1

感知机(Perceptron)为什么不能表示异或(XOR)

1.感知机不能表示异或在很早之前学Pattern Recognition相关课程的时候,老师在课堂上就说过感知机遇到的一个大问题就是无法表示异或问题(XOR)。后来接触深度学习相关的内容,开头部分肯定会提到感知机,提到感知机也必会提到不能表示异或的问题。正好抽出点时间,稍微搞明白一下为什么感知机不...

2017-12-11 10:23:48

阅读数:2760

评论数:0

深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)

原文链接地址:http://blog.csdn.net/u012759136/article/details/52302426本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。1.SGD此处的SGD指mini-batch grad...

2017-09-03 20:40:35

阅读数:287

评论数:0

最容易理解的对卷积(convolution)的解释

啰嗦开场白读本科期间,信号与系统里面经常讲到卷积(convolution),自动控制原理里面也会经常有提到卷积。硕士期间又学了线性系统理论与数字信号处理,里面也是各种大把大把卷积的概念。至于最近大火的深度学习,更有专门的卷积神经网络(Convolutional Neural Network, CN...

2017-01-25 15:14:49

阅读数:70241

评论数:20

TensorFlow 安装教程

趁着十一放假期间,有这么一点空闲时间,自己看了些tensorflow的资料,顺便在自己的机器上安装了一下tensorflow的环境。安装过程还算比较顺利,现在跟大家分享一下。1.准备好Anaconda环境tensorflow是属于很高层的应用。高层应用的一个比较大的麻烦就是需要依赖的底层的东西很多...

2016-10-07 14:48:01

阅读数:59900

评论数:4

提示
确定要删除当前文章?
取消 删除
关闭
关闭