kmpA

Given two sequences of numbers : a[1], a[2], …… , a[N], and b[1], b[2], …… , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], …… , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], …… , a[N]. The third line contains M integers which indicate b[1], b[2], …… , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int nnext[10005];
void tonext(int  b[],int blen)
{
    int k=-1,i;
    nnext[0]=-1;
    for(i=1;i<blen;i++)
    {
        while(k>-1&&b[k+1]!=b[i]) k=nnext[k];
        if(b[k+1]==b[i]) k++;
        nnext[i]=k;
    }
}
void kmp(int a[],int b[],int alen,int blen)
{
    int k=-1,i,sum=0;
    tonext(b,blen);
    for(i=0;i<alen;i++)
    {
        while(k>-1&&a[i]!=b[k+1]) k=nnext[k];
        if(a[i]==b[k+1]) k++;
        if(k==blen-1)
        {
            cout<<(i-k)<<endl;
            i=i-k+1;
            k=-1;
            sum++;
        }
    }
}
int  main()
{
    int alen,n,j,blen;
    cin>>n;
    for(j=0;j<n;j++)
    {
        cin>>alen>>blen;
        int i,a[1000005],b[10005];
        for(i=0;i<alen;i++)
        {
            cin>>a[i];
        }
        for(i=0;i<blen;i++)
        {
            cin>>b[i];
        }
        kmp(a,b,alen,blen);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值