Given two sequences of numbers : a[1], a[2], …… , a[N], and b[1], b[2], …… , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], …… , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], …… , a[N]. The third line contains M integers which indicate b[1], b[2], …… , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int nnext[10005];
void tonext(int b[],int blen)
{
int k=-1,i;
nnext[0]=-1;
for(i=1;i<blen;i++)
{
while(k>-1&&b[k+1]!=b[i]) k=nnext[k];
if(b[k+1]==b[i]) k++;
nnext[i]=k;
}
}
void kmp(int a[],int b[],int alen,int blen)
{
int k=-1,i,sum=0;
tonext(b,blen);
for(i=0;i<alen;i++)
{
while(k>-1&&a[i]!=b[k+1]) k=nnext[k];
if(a[i]==b[k+1]) k++;
if(k==blen-1)
{
cout<<(i-k)<<endl;
i=i-k+1;
k=-1;
sum++;
}
}
}
int main()
{
int alen,n,j,blen;
cin>>n;
for(j=0;j<n;j++)
{
cin>>alen>>blen;
int i,a[1000005],b[10005];
for(i=0;i<alen;i++)
{
cin>>a[i];
}
for(i=0;i<blen;i++)
{
cin>>b[i];
}
kmp(a,b,alen,blen);
}
}