一文图解 Java 源码的插入排序算法

本文转载自公众号  码出高效面试的程序媛


640

来源:码出高效面试


文章工程:

  • JDK 1.8

  • 工程名:algorithm-core-learning

  • 工程地址:https://github.com/JeffLi1993/algorithm-core-learning

一、前言

什么是算法?算法是某种集合,是简单指令的集合,是被指定的简单指令集合。确定该算法重要的指标:

  • 第一是否能解决问题;

  • 第二算法运行时间,即解决问题出结果需要多少时间;

  • 还有所需的空间资源,比如内存等。

很多时候,写一个工作程序并不够。因为遇到大数据下,运行时间就是一个重要的问题。

算法性能用大 O 标记法表示。大 O 标记法是标记相对增长率,精度是粗糙的。比如 2N 和 3N + 2 ,都是 O(N)。也就是常说的线性增长,还有常说的指数增长等

典型的增长率

640?wx_fmt=png

典型的提供性能做法是分治法,即分支 divide and conquer 策略:

  1. 将问题分成两个大致相等的子问题,递归地对它们求解,这是分的部分;

  2. 治阶段将两个子问题的解修补到一起,并可能再做些少量的附加工作,最后得到整个问题的解。

640?wx_fmt=jpeg

二、排序

640?wx_fmt=jpeg

排序问题,是古老,但一直流行的问题。从 ACM 接触到现在工作,每次涉及算法,或品读 JDK 源码中一些算法,经常会有排序的算法出现。

排序算法是为了将一组数组(或序列)重新排列,排列后数据符合从大到小(或从小到大)的次序。这样数据从无序到有序,会有什么好处?

  • 应用层面:解决问题。

    • 最简单的是可以找到最大值或者最小值

    • 解决"一起性"问题,即相同标志元素连在一起

    • 匹配在两个或者更多个文件中的项目

    • 通过键码值查找信息

  • 系统层面:减少系统的熵值,增加系统的有序度 (Donald Knuth 的经典之作《计算机程序设计艺术》(The Art of Computer Programming)的第三卷)

通过维基百科查阅资料得到:在主内存中完成的排序叫做,内部排序。那需要在磁盘等其他存储完成的排序,叫做外部排序 external sorting。资料地址:https://en.wikipedia.org/wiki/External_sorting

上一篇《程序兵法:Java String 源码的排序算法(一)》,讲到了 java.lang.Comparable 接口。那么接口是一个抽象类型,是抽象方法(compareTo)的集合,用 interface 来声明。因此被排序的对象属于 Comparable 类型,即实现 Comparable 接口,然后调用对象实现的 compareTo 方法进行比较后排序。

在这些条件下的排序,叫作基于比较的排序(comparison-based sorting)

三、插入排序

白话文:熊大(一)、熊二、熊三... 按照身高从低到高排队(排序)。这时候熊 N 加入队伍,它从队伍尾巴开始比较。如果它比前面的熊身高低,则与被比较的交换位置,依次从尾巴到头部进行比较 & 交换位置。最终换到了应该熊 N 所在的位置。这就是插入排序的原理。

插入排序(insertion sort)

  • 最简单的排序之一。ps: 冒泡排序看看就好,不推荐学习

  • 由 N - 1 次排序过程组成。

    • 如果被排序的这样一个元素,就不需要排序。即 N =1 (1 - 1 = 0)

    • 每一次排序保证,从第一个位置到当前位置的元素为已排序状态。

  • 如图:每个元素往前进行比较,并终止于自己所在的位置

640?wx_fmt=gif

/**	
 * 插入排序案例	
 * <p>	
 * Created by 泥瓦匠@bysocket.com on 19/5/15.	
 */	
public class InsertionSortingDemo {	
    /**	
     * 插入排序	
     *	
     * @param arr 能比较的对象数组	
     * @param <T> 已排序的对象数组	
     */	
    public static <T extends Comparable> void insertionSort(T[] arr) {	
        int j;	
        // 从数组第二个元素开始,向前比较	
        for (int p = 1; p < arr.length; p++) {	
            T tmp = arr[p];	
            // 循环,向前依次比较	
            // 如果比前面元素小,交换位置	
            for (j = p; (j > 0) && (tmp.compareTo(arr[j - 1]) < 0); j--) {	
                arr[j] = arr[j - 1];	
            }	
            // 如果比前面元素大或者相等,那么这就是元素的位置,交换	
            arr[j] = tmp;	
        }	
    }	
    public static void main(String[] args) {	
        Integer[] intArr = new Integer[] {2, 3, 1, 4, 3};	
        System.out.println(Arrays.toString(intArr));	
        insertionSort(intArr);	
        System.out.println(Arrays.toString(intArr));	
    }	
}

代码解析如下:

  • 从数组的第二个元素,向前开始比较。比第一个元素小,则交换位置

  • 如果第二个元素比较完毕,那就第三个,第四个... 以此类推

  • 比较到最后一个元素时,完成排序

时间复杂度是 O(N^2),最好情景的是排序已经排好的,那就是 O(N),因为满足不了循环的判断条件;最极端的是反序的数组,那就是 O(N^2)。所以该算法的时间复杂度为 O(N^2)

运行 main 方法,结果如下:

 
 
  1. [2, 3, 1, 4, 3]

  2. [1, 2, 3, 3, 4]

再考虑考虑优化,会怎么优化呢?插入排序优化版 不是往前比较 。往前的一半比较,二分比较会更好。具体代码,可以自行试试

四、Array.sort 源码中的插入排序

上面用自己实现的插入算法进行排序,其实 JDK 提供了 Array.sort 方法,方便排序。案例代码如下:

 
 
  1. /**

  2. * Arrays.sort 排序案例

  3. * <p>

  4. * Created by 泥瓦匠@bysocket.com on 19/5/28.

  5. */

  6. public class ArraysSortDemo {


  7. public static void main(String[] args) {


  8. Integer[] intArr = new Integer[] {2, 3, 1, 4, 3};


  9. System.out.println(Arrays.toString(intArr));

  10. Arrays.sort(intArr);

  11. System.out.println(Arrays.toString(intArr));

  12. }

  13. }

运行 main 方法,结果如下:

 
 
  1. [2, 3, 1, 4, 3]

  2. [1, 2, 3, 3, 4]

那 Arrays.sort 是如何实现的呢?JDK 1.2 的时候有了 Arrays ,JDK 1.8 时优化了一版 sort 算法。大致如下:

  • 如果元素数量小于 47,使用插入排序

  • 如果元素数量小于 286,使用快速排序

  • Timsort 算法整合了归并排序和插入排序

640?wx_fmt=png

源码中我们看到了 mergeSort 里面整合了插入排序算法,跟上面实现的异曲同工。这边就不一行一行解释了。

五、小结

算法是解决问题的。所以不一定一个算法解决一个问题,可能多个算法一起解决一个问题。达到问题的最优解。插入排序,这样就这么简单

资料:

  • 《数据结构与算法分析:Java语言描述(原书第3版)》

  • https://www.cnblogs.com/vamei/tag/%E7%AE%97%E6%B3%95/



640?wx_fmt=gif


最后安利一下小灰创建的免费知识星球

每天都有许多有趣的抢答活动和各种奖品,

关键是不要钱!欢迎大家扫码加入:


640?wx_fmt=png

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值