BZOJ 2982: combination Lucas定理

版权声明:想转就转吧,注明出处就行 括弧笑 https://blog.csdn.net/BlackJack_/article/details/71081448

2982: combination

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 522  Solved: 321
[Submit][Status][Discuss]

Description

LMZ有n个不同的基友,他每天晚上要选m个进行[河蟹],而且要求每天晚上的选择都不一样。那么LMZ能够持续多少个这样的夜晚呢?当然,LMZ的一年有10007天,所以他想知道答案mod 10007的值。(1<=m<=n<=200,000,000)

Input

  第一行一个整数t,表示有t组数据。(t<=200)
  接下来t行每行两个整数n, m,如题意。

Output

T行,每行一个数,为C(n, m) mod 10007的答案。

Sample Input

4
5 1
5 2
7 3
4 2

Sample Output

5
10
35
6


这个题呢

显然是要用Lucas定理滴

C(n,m)=C(n%p,m%p)*C(n/p,m/p) mod p

当然,最重要的是题目本身的含义,不要多想


#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<queue>
#include<set>
#include<map>
using namespace std;
typedef long long ll;
inline ll read()
{
	ll x=0,f=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch<='9'&&ch>='0'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
	return f*x;
}
const ll mod=10007;
ll fac[mod<<1],inv[mod<<1];
void initial()
{
	fac[1]=1;inv[1]=1;inv[0]=1;
	for(int i=2;i<mod;i++)fac[i]=fac[i-1]*i%mod;
	for(int i=2;i<mod;i++)inv[i]=(mod-mod/i)*inv[mod%i]%mod;
	for(int i=1;i<mod;i++)inv[i]=inv[i-1]*inv[i]%mod;
}
ll Lucas(ll n,ll m)
{
	if(m>n)return 0;
	if(n<mod&&m<mod)return fac[n]*inv[n-m]*inv[m]%mod;
	else return Lucas(n%mod,m%mod)*Lucas(n/mod,m/mod)%mod;
}
int main()
{
	int T=read();
	initial();
	while(T--)
	{
		ll n=read(),m=read();
		printf("%lld\n",Lucas(n,m));
	}
	return 0;
} 


阅读更多

没有更多推荐了,返回首页