blackmmu
码龄8年
关注
提问 私信
  • 博客:14,290
    14,290
    总访问量
  • 6
    原创
  • 1,442,705
    排名
  • 9
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2017-08-04
博客简介:

blackmmu的博客

查看详细资料
个人成就
  • 获得7次点赞
  • 内容获得40次评论
  • 获得44次收藏
创作历程
  • 1篇
    2020年
  • 1篇
    2018年
  • 4篇
    2017年
成就勋章
TA的专栏
  • 计算机视觉
    1篇
  • 大数据
    3篇
  • 光流
    1篇
  • tensorlfow
    1篇
创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Handheld Multi-Frame Super-Resolution论文理解

李宜烜 > 2020/02/02 > Handheld Multi-Frame Super-Resolution论文理解 > image2020-2-2_21-0-36.png以上为论文算法流程图:a)RAW输入视频帧序列b)提取图像局部梯度c)高斯核回归d)帧局部对齐采用HDR+算法e)局部鲁棒性统计f)运动鲁棒性g)分颜色通道的贡献叠加h)图像融合结果总述...
原创
发布博客 2020.02.03 ·
3946 阅读 ·
4 点赞 ·
1 评论 ·
14 收藏

Crash: Could not create cuDNN handle when convnets are used(环境tensorflow1.2-cuda8.0-cudnn5.1.10)

本机环境今天遇到一个安装时候的问题,所以在这里进行一下记录,也为其他人提供些方便。 首先,我使用的Ubuntu16.04,显卡GeForce GTX 1080,环境tensorflow1.2-cuda8.0-cudnn5.1.10。 在运行程序的时候出现一下错误:2018-04-05 11:09:14.862073: E tensorflow/stream_executor/cuda/...
原创
发布博客 2018.04.05 ·
588 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks 代码及环境配置

为了防止各位研究者再运用代码是出现像我一样的错误,本篇博客,粗讲网络结构,细讲网络代码环境配置过程。在湿胸的帮助下,以及在github上进行提问,终于用着别人的代码,实现了光流预测过程。Flownet的网络结构首先在《FlowNet: Learning Optical Flow with Convolutional Networks》这篇文章中,第一次提出用深度学习的方式来进行光流预测,当然因为第一
原创
发布博客 2017.10.20 ·
6865 阅读 ·
3 点赞 ·
39 评论 ·
37 收藏

Spark 基础及RDD基本操作

Spark 基础及RDD基本操作spark的优势首先,Hadoop这项大数据处理技术大概已有十年历史,而且被看做是首选的大数据集合处理的解决方案。MapReduce是一路计算的优秀解决方案,不过对于需要多路计算和算法的用例来说,并非十分高效。数据处理流程中的每一步都需要一个Map阶段和一个Reduce阶段,而且如果要利用这一解决方案,需要将所有用例都转换成MapReduce模式。在下一步开始之前,上
原创
发布博客 2017.08.09 ·
715 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

互联网大数据框架介绍(二)Hive,HBase

互联网大数据框架介绍(二)Hive,HBase继续上一节的hadoop,HDFS,yarn,MapReduce。这节继续想下讲,将数据仓库Hive,和大数据的数据库HBaseHive首先,我们要明确什么是Hive,Hive是构建于Hadoop的HDFS和MapReduce上,的用于管理和查询结构化/非结构化数据的数据仓库。Hive分别有三个部分组成: 1)使用HQL作为查询接口 2)使用HDFS
原创
发布博客 2017.08.05 ·
941 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

互联网大数据框架介绍(一)Hadoop,HDFS,yarn,Mapreduce

互联网大数据框架介绍(一)Hadoop,HDFS,yarn,Mapreduce如下图,这是现在流行的大数据技术线路图,也是最近才学习大数据的课程,所以对以下几个方面,hadoop,HDFS,yarn,Hbase,Mapreduce,Spark,Spark Streaming,Hive,Sqoop,这几个方面从数据存储到ETL这些核心部分进行介绍,。第一部分:hadoop首先,什么是hadoop:
原创
发布博客 2017.08.04 ·
1205 阅读 ·
0 点赞 ·
0 评论 ·
9 收藏