基于hadoop的推荐算法,讲其中mahout实现的基于项目的推荐算法
分为4步:
1.获得人-物 用户矩阵
输入为所有人对物品的评价或关联
map端输出key为人,value为物品+倾好度
reeduce端输出key为人,vallue为多个物品+倾好度
2.获得物-物 项目矩阵
输入为“用户矩阵”,讲每一行人-物数据中的物品做笛卡尔积,生产成物-物的关联
map端输出为key为物,value为关联度
reduce端输出key为物,value为多个物的关联度
(可以根据各种规则生成项目相似度矩阵表,此处算法带过)
修改:
求项目相似矩阵是基于项目的协同过滤算法的核心
公式有很多种,核心是物品i和物品j相关用户的交集与并集的商
mahout使用的公式是1.dot(i,j) = sum(Pi(u)*Pi(u))
2.norms(i) = sum(Pi(u)^2)
3.simi(i,j) = 1/(1+(norms(i)-2*dot(i,j)+noorm(i))^1/2)
mahout的实现方法是
第一个job,用物品-人的矩阵,求得norms,即物品的用户平方和,输出是物-norms
第二个job,Map:用人-物的矩阵,求Pi(u)*Pi(u),即相同用户的物品的评价的乘机,输出物-多个对端物品的Pi(u)*Pi(u)
Reduce:用物-多个对端物品的Pi(u)*Pi(u)和物-norms,求得物品的相似矩阵(因为这个时候可以汇总所有和这个物品相关的物品的dot)
第三个job,补全物品的相似矩阵
3.获得用户-项目相似矩阵
输入为人-物 用户矩阵 和 物-物 项目矩阵
Map端输出key为物,value为类VectorOrPrefWritable,是包含物与人的倾好度,或是物与物的相似度
reduce端输出key为物,value为类VectorAndPrefWritable,是汇总当个物品到所有人的倾好度和到所有物品的相似度
4.获得用户推荐矩阵
输入为VectorAndPrefWritable
Map端输出为key:人,value:物+系数(map端根据单个物品贡献的系数生成推荐系数,也就是人到物品A的倾好度*物品A到其他物品的相似度)
reduce端输出为key:人,,value:推荐项目+系数(reduce端使用自定公式,汇总所有单物品贡献的四叔,求人到其他项目的倾好度,取topn作为当前用户的推荐项目)
再在这里贴几个mahout推荐算法分析的帖子:
http://eric-gcm.iteye.com/blog/1817822
http://eric-gcm.iteye.com/blog/1818033
http://eric-gcm.iteye.com/blog/1820060
以下是mahout代码:
ItemSimilarityJob类是mahout使用hadoop做推荐引擎的主要实现类,下面开始分析。
run()函数是启动函数:
- public final class RecommenderJob extends AbstractJob {
- public static final String BOOLEAN_DATA = "booleanData";
- private static final int DEFAULT_MAX_SIMILARITIES_PER_ITEM = 100;
- private static final int DEFAULT_MAX_PREFS_PER_USER = 1000;
- private static final int DEFAULT_MIN_PREFS_PER_USER = 1;
- @Override
- public int run(String[] args) throws Exception {
- //这里原来有大一堆代码,都是用来载入配置项,不用管它
- //第一步:准备矩阵,将原始数据转换为一个矩阵,在PreparePreferenceMatrixJob这个类中完成
- if (shouldRunNextPhase(parsedArgs, currentPhase)) {
- ToolRunner.run(getConf(), new PreparePreferenceMatrixJob(), new String[]{
- "--input", getInputPath().toString(),
- "--output", prepPath.toString(),
- "--maxPrefsPerUser", String.valueOf(maxPrefsPerUserInItemSimilarity),
- "--minPrefsPerUser", String.valueOf(minPrefsPerUser),
- "--booleanData", String.valueOf(booleanData),
- "--tempDir", getTempPath().toString()});
- numberOfUsers = HadoopUtil.readInt(new Path(prepPath, PreparePreferenceMatrixJob.NUM_USERS), getConf());
- }
- //第二步:计算协同矩阵
- if (shouldRunNextPhase(parsedArgs, currentPhase)) {
- /* special behavior if phase 1 is skipped */
- if (numberOfUsers == -1) {
- numberOfUsers = (int) HadoopUtil.countRecords(new Path(prepPath, PreparePreferenceMatrixJob.USER_VECTORS),
- PathType.LIST, null, getConf());
- }
- /* Once DistributedRowMatrix uses the hadoop 0.20 API, we should refactor this call to something like
- * new DistributedRowMatrix(...).rowSimilarity(...) */
- //calculate the co-occurrence matrix
- ToolRunner.run(getConf(), new RowSimilarityJob(), new String[]{
- "--input", new Path(prepPath, PreparePreferenceMatrixJob.RATING_MATRIX).toString(),
- "--output", similarityMatrixPath.toString(),
- "--numberOfColumns", String.valueOf(numberOfUsers),
- "--similarityClassname", similarityClassname,
- "--maxSimilaritiesPerRow", String.valueOf(maxSimilaritiesPerItem),
- "--excludeSelfSimilarity", String.valueOf(Boolean.TRUE),
- "--threshold", String.valueOf(threshold),
- "--tempDir", getTempPath().toString()});
- }
- //start the multiplication of the co-occurrence matrix by the user vectors
- if (shouldRunNextPhase(parsedArgs, currentPhase)) {
- Job prePartialMultiply1 = prepareJob(
- similarityMatrixPath, prePartialMultiplyPath1, SequenceFileInputFormat.class,
- SimilarityMatrixRowWrapperMapper.class, VarIntWritable.class, VectorOrPrefWritable.class,
- Reducer.class, VarIntWritable.class, VectorOrPrefWritable.class,
- SequenceFileOutputFormat.class);
- boolean succeeded = prePartialMultiply1.waitForCompletion(true);
- if (!succeeded)
- return -1;
- //continue the multiplication
- Job prePartialMultiply2 = prepareJob(new Path(prepPath, PreparePreferenceMatrixJob.USER_VECTORS),
- prePartialMultiplyPath2, SequenceFileInputFormat.class, UserVectorSplitterMapper.class, VarIntWritable.class,
- VectorOrPrefWritable.class, Reducer.class, VarIntWritable.class, VectorOrPrefWritable.class,
- SequenceFileOutputFormat.class);
- if (usersFile != null) {
- prePartialMultiply2.getConfiguration().set(UserVectorSplitterMapper.USERS_FILE, usersFile);
- }
- prePartialMultiply2.getConfiguration().setInt(UserVectorSplitterMapper.MAX_PREFS_PER_USER_CONSIDERED,
- maxPrefsPerUser);
- succeeded = prePartialMultiply2.waitForCompletion(true);
- if (!succeeded)
- return -1;
- //finish the job
- Job partialMultiply = prepareJob(
- new Path(prePartialMultiplyPath1 + "," + prePartialMultiplyPath2), partialMultiplyPath,
- SequenceFileInputFormat.class, Mapper.class, VarIntWritable.class, VectorOrPrefWritable.class,
- ToVectorAndPrefReducer.class, VarIntWritable.class, VectorAndPrefsWritable.class,
- SequenceFileOutputFormat.class);
- setS3SafeCombinedInputPath(partialMultiply, getTempPath(), prePartialMultiplyPath1, prePartialMultiplyPath2);
- succeeded = partialMultiply.waitForCompletion(true);
- if (!succeeded)
- return -1;
- }
- if (shouldRunNextPhase(parsedArgs, currentPhase)) {
- //filter out any users we don't care about
- /* convert the user/item pairs to filter if a filterfile has been specified */
- if (filterFile != null) {
- Job itemFiltering = prepareJob(new Path(filterFile), explicitFilterPath, TextInputFormat.class,
- ItemFilterMapper.class, VarLongWritable.class, VarLongWritable.class,
- ItemFilterAsVectorAndPrefsReducer.class, VarIntWritable.class, VectorAndPrefsWritable.class,
- SequenceFileOutputFormat.class);
- boolean succeeded = itemFiltering.waitForCompletion(true);
- if (!succeeded)
- return -1;
- }
- String aggregateAndRecommendInput = partialMultiplyPath.toString();
- if (filterFile != null) {
- aggregateAndRecommendInput += "," + explicitFilterPath;
- }
- //extract out the recommendations
- Job aggregateAndRecommend = prepareJob(
- new Path(aggregateAndRecommendInput), outputPath, SequenceFileInputFormat.class,
- PartialMultiplyMapper.class, VarLongWritable.class, PrefAndSimilarityColumnWritable.class,
- AggregateAndRecommendReducer.class, VarLongWritable.class, RecommendedItemsWritable.class,
- TextOutputFormat.class);
- Configuration aggregateAndRecommendConf = aggregateAndRecommend.getConfiguration();
- if (itemsFile != null) {
- aggregateAndRecommendConf.set(AggregateAndRecommendReducer.ITEMS_FILE, itemsFile);
- }
- if (filterFile != null) {
- setS3SafeCombinedInputPath(aggregateAndRecommend, getTempPath(), partialMultiplyPath, explicitFilterPath);
- }
- setIOSort(aggregateAndRecommend);
- aggregateAndRecommendConf.set(AggregateAndRecommendReducer.ITEMID_INDEX_PATH,
- new Path(prepPath, PreparePreferenceMatrixJob.ITEMID_INDEX).toString());
- aggregateAndRecommendConf.setInt(AggregateAndRecommendReducer.NUM_RECOMMENDATIONS, numRecommendations);
- aggregateAndRecommendConf.setBoolean(BOOLEAN_DATA, booleanData);
- boolean succeeded = aggregateAndRecommend.waitForCompletion(true);
- if (!succeeded)
- return -1;
- }
- return 0;
- }
第二步,计算协同矩阵,主要在RowSimilarityJob 这个类中完成
- ToolRunner.run(getConf(), new RowSimilarityJob(), new String[]{
- "--input", new Path(prepPath, PreparePreferenceMatrixJob.RATING_MATRIX).toString(),
- "--output", similarityMatrixPath.toString(),
- "--numberOfColumns", String.valueOf(numberOfUsers),
- "--similarityClassname", similarityClassname,
- "--maxSimilaritiesPerRow", String.valueOf(maxSimilaritiesPerItem),
- "--excludeSelfSimilarity", String.valueOf(Boolean.TRUE),
- "--threshold", String.valueOf(threshold),
- "--tempDir", getTempPath().toString()});
- }
可以看到这个job的输入路径就是上一篇中,PreparePreferenceMatrixJob中最后一个reducer的输出路径。
下边详细分析RowSimilarityJob类的实现:
- public class RowSimilarityJob extends AbstractJob {
- @Override
- public int run(String[] args) throws Exception {
- //一大堆载入参数的代码,忽略
- //第一个MapReduce
- if (shouldRunNextPhase(parsedArgs, currentPhase)) {
- Job normsAndTranspose = prepareJob(getInputPath(), weightsPath, VectorNormMapper.class, IntWritable.class,
- VectorWritable.class, MergeVectorsReducer.class, IntWritable.class, VectorWritable.class);
- normsAndTranspose.setCombinerClass(MergeVectorsCombiner.class);
- Configuration normsAndTransposeConf = normsAndTranspose.getConfiguration();
- normsAndTransposeConf.set(THRESHOLD, String.valueOf(threshold));
- normsAndTransposeConf.set(NORMS_PATH, normsPath.toString());
- normsAndTransposeConf.set(NUM_NON_ZERO_ENTRIES_PATH, numNonZeroEntriesPath.toString());
- normsAndTransposeConf.set(MAXVALUES_PATH, maxValuesPath.toString());
- normsAndTransposeConf.set(SIMILARITY_CLASSNAME, similarityClassname);
- boolean succeeded = normsAndTranspose.waitForCompletion(true);
- if (!succeeded) {
- return -1;
- }
- }
- //第二个MapReduce
- if (shouldRunNextPhase(parsedArgs, currentPhase)) {
- Job pairwiseSimilarity = prepareJob(weightsPath, pairwiseSimilarityPath, CooccurrencesMapper.class,
- IntWritable.class, VectorWritable.class, SimilarityReducer.class, IntWritable.class, VectorWritable.class);
- pairwiseSimilarity.setCombinerClass(VectorSumReducer.class);
- Configuration pairwiseConf = pairwiseSimilarity.getConfiguration();
- pairwiseConf.set(THRESHOLD, String.valueOf(threshold));
- pairwiseConf.set(NORMS_PATH, normsPath.toString());
- pairwiseConf.set(NUM_NON_ZERO_ENTRIES_PATH, numNonZeroEntriesPath.toString());
- pairwiseConf.set(MAXVALUES_PATH, maxValuesPath.toString());
- pairwiseConf.set(SIMILARITY_CLASSNAME, similarityClassname);
- pairwiseConf.setInt(NUMBER_OF_COLUMNS, numberOfColumns);
- pairwiseConf.setBoolean(EXCLUDE_SELF_SIMILARITY, excludeSelfSimilarity);
- boolean succeeded = pairwiseSimilarity.waitForCompletion(true);
- if (!succeeded) {
- return -1;
- }
- }
- //第三个MapReduce
- if (shouldRunNextPhase(parsedArgs, currentPhase)) {
- Job asMatrix = prepareJob(pairwiseSimilarityPath, getOutputPath(), UnsymmetrifyMapper.class,
- IntWritable.class, VectorWritable.class, MergeToTopKSimilaritiesReducer.class, IntWritable.class,
- VectorWritable.class);
- asMatrix.setCombinerClass(MergeToTopKSimilaritiesReducer.class);
- asMatrix.getConfiguration().setInt(MAX_SIMILARITIES_PER_ROW, maxSimilaritiesPerRow);
- boolean succeeded = asMatrix.waitForCompletion(true);
- if (!succeeded) {
- return -1;
- }
- }
- return 0;
- }
可以看到RowSimilityJob也是分成三个MapReduce过程:
1、Mapper :VectorNormMapper类,输出 ( userid_index, <itemid_index, pref> )类型
- public static class VectorNormMapper extends Mapper<IntWritable,VectorWritable,IntWritable,VectorWritable> {
- @Override
- protected void map(IntWritable row, VectorWritable vectorWritable, Context ctx)
- throws IOException, InterruptedException {
- Vector rowVector = similarity.normalize(vectorWritable.get());
- int numNonZeroEntries = 0;
- double maxValue = Double.MIN_VALUE;
- Iterator<Vector.Element> nonZeroElements = rowVector.iterateNonZero();
- while (nonZeroElements.hasNext()) {
- Vector.Element element = nonZeroElements.next();
- RandomAccessSparseVector partialColumnVector = new RandomAccessSparseVector(Integer.MAX_VALUE);
- partialColumnVector.setQuick(row.get(), element.get());
- //输出 ( userid_index, <itemid_index, pref> )类型
- ctx.write(new IntWritable(element.index()), new VectorWritable(partialColumnVector));
- numNonZeroEntries++;
- if (maxValue < element.get()) {
- maxValue = element.get();
- }
- }
- if (threshold != NO_THRESHOLD) {
- nonZeroEntries.setQuick(row.get(), numNonZeroEntries);
- maxValues.setQuick(row.get(), maxValue);
- }
- norms.setQuick(row.get(), similarity.norm(rowVector));
- //计算item的总数
- ctx.getCounter(Counters.ROWS).increment(1);
- }
- }
Reduer : MergeVectorsReducer类,输入的是(userid_index, <itemid_index, pref>),同一个userid_index在此进行合并,输出( userid_index, vector<itemid_index, pref> )
- public static class MergeVectorsReducer extends Reducer<IntWritable,VectorWritable,IntWritable,VectorWritable> {
- @Override
- protected void reduce(IntWritable row, Iterable<VectorWritable> partialVectors, Context ctx)
- throws IOException, InterruptedException {
- Vector partialVector = Vectors.merge(partialVectors);
- if (row.get() == NORM_VECTOR_MARKER) {
- Vectors.write(partialVector, normsPath, ctx.getConfiguration());
- } else if (row.get() == MAXVALUE_VECTOR_MARKER) {
- Vectors.write(partialVector, maxValuesPath, ctx.getConfiguration());
- } else if (row.get() == NUM_NON_ZERO_ENTRIES_VECTOR_MARKER) {
- Vectors.write(partialVector, numNonZeroEntriesPath, ctx.getConfiguration(), true);
- } else {
- ctx.write(row, new VectorWritable(partialVector));
- }
- }
- }
- }
2、Mapper:CooccurrencesMapper类,对同一个userid_index下的vector<itemid_index ,pref>进行处理,
收集<item1, item2>对, 输出为( itemid_index, vector<itemid_index, value> )
- public static class CooccurrencesMapper extends Mapper<IntWritable,VectorWritable,IntWritable,VectorWritable> {
- @Override
- protected void map(IntWritable column, VectorWritable occurrenceVector, Context ctx)
- throws IOException, InterruptedException {
- Vector.Element[] occurrences = Vectors.toArray(occurrenceVector);
- Arrays.sort(occurrences, BY_INDEX);
- int cooccurrences = 0;
- int prunedCooccurrences = 0;
- for (int n = 0; n < occurrences.length; n++) {
- Vector.Element occurrenceA = occurrences[n];
- Vector dots = new RandomAccessSparseVector(Integer.MAX_VALUE);
- for (int m = n; m < occurrences.length; m++) {
- Vector.Element occurrenceB = occurrences[m];
- if (threshold == NO_THRESHOLD || consider(occurrenceA, occurrenceB)) {
- dots.setQuick(occurrenceB.index(), similarity.aggregate(occurrenceA.get(), occurrenceB.get()));
- cooccurrences++;
- } else {
- prunedCooccurrences++;
- }
- }
- ctx.write(new IntWritable(occurrenceA.index()), new VectorWritable(dots));
- }
- ctx.getCounter(Counters.COOCCURRENCES).increment(cooccurrences);
- ctx.getCounter(Counters.PRUNED_COOCCURRENCES).increment(prunedCooccurrences);
- }
- }
Reducer :SimilarityReducer类,生成协同矩阵
- public static class SimilarityReducer
- extends Reducer<IntWritable,VectorWritable,IntWritable,VectorWritable> {
- @Override
- protected void reduce(IntWritable row, Iterable<VectorWritable> partialDots, Context ctx)
- throws IOException, InterruptedException {
- Iterator<VectorWritable> partialDotsIterator = partialDots.iterator();
- //取一个vecotr作为该item的行向量
- Vector dots = partialDotsIterator.next().get();
- while (partialDotsIterator.hasNext()) {
- Vector toAdd = partialDotsIterator.next().get();
- Iterator<Vector.Element> nonZeroElements = toAdd.iterateNonZero();
- while (nonZeroElements.hasNext()) {
- Vector.Element nonZeroElement = nonZeroElements.next();
- //nonZeroElement.index()为itemid,将另一个vecotr中itemid的value加进去
- dots.setQuick(nonZeroElement.index(), dots.getQuick(nonZeroElement.index()) + nonZeroElement.get());
- }
- }
- //最后得到的dots是协同矩阵中行号为row的一行,行中元素是item对其他的item的相似度
- Vector similarities = dots.like();
- double normA = norms.getQuick(row.get());
- Iterator<Vector.Element> dotsWith = dots.iterateNonZero();
- while (dotsWith.hasNext()) {
- Vector.Element b = dotsWith.next();
- double similarityValue = similarity.similarity(b.get(), normA, norms.getQuick(b.index()), numberOfColumns);
- if (similarityValue >= treshold) {
- similarities.set(b.index(), similarityValue);
- }
- }
- if (excludeSelfSimilarity) {
- similarities.setQuick(row.get(), 0);
- }
- ctx.write(row, new VectorWritable(similarities));
- }
- }
3、Mapper:UnsymmetrifyMapper类,用来生成对称矩阵的。上一步得到的是非对称矩阵,首先将矩阵偏转,得到偏转矩阵,用原矩阵加上偏转矩阵,可以得到对称矩阵
- public static class UnsymmetrifyMapper extends Mapper<IntWritable,VectorWritable,IntWritable,VectorWritable> {
- private int maxSimilaritiesPerRow;
- @Override
- protected void setup(Mapper.Context ctx) throws IOException, InterruptedException {
- maxSimilaritiesPerRow = ctx.getConfiguration().getInt(MAX_SIMILARITIES_PER_ROW, 0);
- Preconditions.checkArgument(maxSimilaritiesPerRow > 0, "Incorrect maximum number of similarities per row!");
- }
- @Override
- protected void map(IntWritable row, VectorWritable similaritiesWritable, Context ctx)
- throws IOException, InterruptedException {
- Vector similarities = similaritiesWritable.get();
- // For performance reasons moved transposedPartial creation out of the while loop and reusing the same vector
- Vector transposedPartial = similarities.like();
- TopK<Vector.Element> topKQueue = new TopK<Vector.Element>(maxSimilaritiesPerRow, Vectors.BY_VALUE);
- Iterator<Vector.Element> nonZeroElements = similarities.iterateNonZero();
- //这个地方用来生成偏转矩阵的,非对称矩阵,用原矩阵加上偏转矩阵,可以得到对称矩阵
- while (nonZeroElements.hasNext()) {
- Vector.Element nonZeroElement = nonZeroElements.next();
- topKQueue.offer(new Vectors.TemporaryElement(nonZeroElement));
- transposedPartial.setQuick(row.get(), nonZeroElement.get());
- //偏转矩阵中的每一个元素
- ctx.write(new IntWritable(nonZeroElement.index()), new VectorWritable(transposedPartial));
- transposedPartial.setQuick(row.get(), 0.0);
- }
- Vector topKSimilarities = similarities.like();
- for (Vector.Element topKSimilarity : topKQueue.retrieve()) {
- topKSimilarities.setQuick(topKSimilarity.index(), topKSimilarity.get());
- }
- //这里只收集前maxSimilaritiesPerRow个得分最高的item,所以咱们最后的对称矩阵,实际上每行只有
- //maxSimilaritiesPerRow个是对称的,其他的位置也不管了
- ctx.write(row, new VectorWritable(topKSimilarities));
- }
- }
Reducer:MergeToTopKSimilaritiesReducer类,就是将上面Map偏转的元素都收集起来,也就是完成了偏转矩阵和(截取了得分前maxSimilaritiesPerRow个)的原矩阵相加的过程,得到了对称矩阵
- public static class MergeToTopKSimilaritiesReducer
- extends Reducer<IntWritable,VectorWritable,IntWritable,VectorWritable> {
- private int maxSimilaritiesPerRow;
- @Override
- protected void setup(Context ctx) throws IOException, InterruptedException {
- maxSimilaritiesPerRow = ctx.getConfiguration().getInt(MAX_SIMILARITIES_PER_ROW, 0);
- Preconditions.checkArgument(maxSimilaritiesPerRow > 0, "Incorrect maximum number of similarities per row!");
- }
- @Override
- protected void reduce(IntWritable row, Iterable<VectorWritable> partials, Context ctx)
- throws IOException, InterruptedException {
- Vector allSimilarities = Vectors.merge(partials);
- Vector topKSimilarities = Vectors.topKElements(maxSimilaritiesPerRow, allSimilarities);
- ctx.write(row, new VectorWritable(topKSimilarities));
- }
- }
至此,RowSimilarityJob类的全部工作就完成,最终生成的是一个对称矩阵,也就是协同矩阵
- //协同矩阵与用户向量相乘
- //start the multiplication of the co-occurrence matrix by the user vectors
- if (shouldRunNextPhase(parsedArgs, currentPhase)) {
- //第一个MapReducer
- Job prePartialMultiply1 = prepareJob(
- similarityMatrixPath, prePartialMultiplyPath1, SequenceFileInputFormat.class,
- SimilarityMatrixRowWrapperMapper.class, VarIntWritable.class, VectorOrPrefWritable.class,
- Reducer.class, VarIntWritable.class, VectorOrPrefWritable.class,
- SequenceFileOutputFormat.class);
- boolean succeeded = prePartialMultiply1.waitForCompletion(true);
- if (!succeeded)
- return -1;
- //第二个MapReduce
- //continue the multiplication
- Job prePartialMultiply2 = prepareJob(new Path(prepPath, PreparePreferenceMatrixJob.USER_VECTORS),
- prePartialMultiplyPath2, SequenceFileInputFormat.class, UserVectorSplitterMapper.class, VarIntWritable.class,
- VectorOrPrefWritable.class, Reducer.class, VarIntWritable.class, VectorOrPrefWritable.class,
- SequenceFileOutputFormat.class);
- if (usersFile != null) {
- prePartialMultiply2.getConfiguration().set(UserVectorSplitterMapper.USERS_FILE, usersFile);
- }
- prePartialMultiply2.getConfiguration().setInt(UserVectorSplitterMapper.MAX_PREFS_PER_USER_CONSIDERED,
- maxPrefsPerUser);
- succeeded = prePartialMultiply2.waitForCompletion(true);
- if (!succeeded)
- return -1;
- //finish the job
- //第三个MapReduce
- Job partialMultiply = prepareJob(
- new Path(prePartialMultiplyPath1 + "," + prePartialMultiplyPath2), partialMultiplyPath,
- SequenceFileInputFormat.class, Mapper.class, VarIntWritable.class, VectorOrPrefWritable.class,
- ToVectorAndPrefReducer.class, VarIntWritable.class, VectorAndPrefsWritable.class,
- SequenceFileOutputFormat.class);
- setS3SafeCombinedInputPath(partialMultiply, getTempPath(), prePartialMultiplyPath1, prePartialMultiplyPath2);
- succeeded = partialMultiply.waitForCompletion(true);
- if (!succeeded)
- return -1;
- }
下边也是同样分析一下这个三个MapReduce的细节:
1、Mapper: SimilarityMatrixRowWrapperMapper 类,将协同矩阵的一行拿出来,通过包装,封装成VectorOrPrefWritable类,与那边的UserVectorSplitterMapper 的输出类型一致
- public final class SimilarityMatrixRowWrapperMapper extends
- Mapper<IntWritable,VectorWritable,VarIntWritable,VectorOrPrefWritable> {
- //将协同矩阵的一行拿出来,通过包装,封装成VectorOrPrefWritable类,与那边的UserVectorSplitterMapper
- //的输出类型一致
- @Override
- protected void map(IntWritable key,
- VectorWritable value,
- Context context) throws IOException, InterruptedException {
- Vector similarityMatrixRow = value.get();
- /* remove self similarity */
- similarityMatrixRow.set(key.get(), Double.NaN);
- context.write(new VarIntWritable(key.get()), new VectorOrPrefWritable(similarityMatrixRow));
- }
- }
2、Mapper:UserVectorSplitterMapper类
- //输入格式: theUserID:<itemid_index1,pref1>,<itemid_index2,pref2>........<itemid_indexN,prefN>
- //输出格式: itemid1:<theUserID,pref1>
- // itemid2:<theUserID,pref2>
- // itemid3:<theUserID,pref3>
- // ......
- // itemidN:<theUserID,prefN>
- public final class UserVectorSplitterMapper extends
- Mapper<VarLongWritable,VectorWritable, VarIntWritable,VectorOrPrefWritable> {
- @Override
- protected void map(VarLongWritable key,
- VectorWritable value,
- Context context) throws IOException, InterruptedException {
- long userID = key.get();
- if (usersToRecommendFor != null && !usersToRecommendFor.contains(userID)) {
- return;
- }
- Vector userVector = maybePruneUserVector(value.get());
- Iterator<Vector.Element> it = userVector.iterateNonZero();
- VarIntWritable itemIndexWritable = new VarIntWritable();
- VectorOrPrefWritable vectorOrPref = new VectorOrPrefWritable();
- while (it.hasNext()) {
- Vector.Element e = it.next();
- itemIndexWritable.set(e.index());
- vectorOrPref.set(userID, (float) e.get());
- context.write(itemIndexWritable, vectorOrPref);
- }
- }
3、Reduce:ToVectorAndPrefReducer类,收集协同矩阵为itemid的一行,并且收集评价过该item的用户和评分,最后的输出是 itemid_index,VectorAndPrefsWritable(vector,List<userid>,List<pref>)
- public final class ToVectorAndPrefReducer extends
- Reducer<VarIntWritable,VectorOrPrefWritable,VarIntWritable,VectorAndPrefsWritable> {
- //收集所有key为itemid的
- @Override
- protected void reduce(VarIntWritable key,
- Iterable<VectorOrPrefWritable> values,
- Context context) throws IOException, InterruptedException {
- List<Long> userIDs = Lists.newArrayList();
- List<Float> prefValues = Lists.newArrayList();
- Vector similarityMatrixColumn = null;
- for (VectorOrPrefWritable value : values) {
- if (value.getVector() == null) {
- // Then this is a user-pref value
- userIDs.add(value.getUserID());
- prefValues.add(value.getValue());
- } else {
- // Then this is the column vector
- //协同矩阵的一个行(行号为itemid的一行)
- if (similarityMatrixColumn != null) {
- throw new IllegalStateException("Found two similarity-matrix columns for item index " + key.get());
- }
- similarityMatrixColumn = value.getVector();
- }
- }
- if (similarityMatrixColumn == null) {
- return;
- }
- //收集协同矩阵为itemid的一行,并且手机评价过该item的用户和评分
- VectorAndPrefsWritable vectorAndPrefs = new VectorAndPrefsWritable(similarityMatrixColumn, userIDs, prefValues);
- context.write(key, vectorAndPrefs);
- }
- }
第四步,协同矩阵和用户向量相乘,得到推荐结果
- //extract out the recommendations
- Job aggregateAndRecommend = prepareJob(
- new Path(aggregateAndRecommendInput), outputPath, SequenceFileInputFormat.class,
- PartialMultiplyMapper.class, VarLongWritable.class, PrefAndSimilarityColumnWritable.class,
- AggregateAndRecommendReducer.class, VarLongWritable.class, RecommendedItemsWritable.class,
- TextOutputFormat.class);
- Configuration aggregateAndRecommendConf = aggregateAndRecommend.getConfiguration();
Mapper:PartialMultiplyMapper类
- //输入类型:( itemid_index, <userid的数组,pref的数组,协同矩阵行号为itemid_index的行> )
- //输出类型: userid,<该用户对itemid_index1的评分,协同矩阵行号为itemid_index1的行> )
- // userid,<该用户对itemid_index2的评分,协同矩阵行号为itemid_index2的行> )
- // .....
- // .....
- // userid,<该用户对itemid_indexN的评分,协同矩阵行号为itemid_indexN的行> )
- public final class PartialMultiplyMapper extends
- Mapper<VarIntWritable,VectorAndPrefsWritable,VarLongWritable,PrefAndSimilarityColumnWritable> {
- @Override
- protected void map(VarIntWritable key,
- VectorAndPrefsWritable vectorAndPrefsWritable,
- Context context) throws IOException, InterruptedException {
- Vector similarityMatrixColumn = vectorAndPrefsWritable.getVector();
- List<Long> userIDs = vectorAndPrefsWritable.getUserIDs();
- List<Float> prefValues = vectorAndPrefsWritable.getValues();
- VarLongWritable userIDWritable = new VarLongWritable();
- PrefAndSimilarityColumnWritable prefAndSimilarityColumn = new PrefAndSimilarityColumnWritable();
- for (int i = 0; i < userIDs.size(); i++) {
- long userID = userIDs.get(i);
- float prefValue = prefValues.get(i);
- if (!Float.isNaN(prefValue)) {
- prefAndSimilarityColumn.set(prefValue, similarityMatrixColumn);
- userIDWritable.set(userID);
- context.write(userIDWritable, prefAndSimilarityColumn);
- }
- }
- }
- }
Reducer:AggregateAndRecommendReducer类,Reducer中进行PartialMultiply,按乘积得到的推荐度的大小取出最大的几个item。对于非booleanData,是用pref和相似度矩阵的PartialMultiply得到推荐度的值来进行排序。
而booleanData的pref值都是1.0f,所以去计算矩阵相乘的过程没有意义,直接累加相似度的值即可。
用这个数据排序就可得到推荐结果
- public final class AggregateAndRecommendReducer extends
- Reducer<VarLongWritable,PrefAndSimilarityColumnWritable,VarLongWritable,RecommendedItemsWritable> {
- @Override
- protected void reduce(VarLongWritable userID,
- Iterable<PrefAndSimilarityColumnWritable> values,
- Context context) throws IOException, InterruptedException {
- if (booleanData) {
- reduceBooleanData(userID, values, context);
- } else {
- reduceNonBooleanData(userID, values, context);
- }
- }
- private void reduceBooleanData(VarLongWritable userID,
- Iterable<PrefAndSimilarityColumnWritable> values,
- Context context) throws IOException, InterruptedException {
- /* having boolean data, each estimated preference can only be 1,
- * however we can't use this to rank the recommended items,
- * so we use the sum of similarities for that. */
- Vector predictionVector = null;
- for (PrefAndSimilarityColumnWritable prefAndSimilarityColumn : values) {
- predictionVector = predictionVector == null
- ? prefAndSimilarityColumn.getSimilarityColumn()
- : predictionVector.plus(prefAndSimilarityColumn.getSimilarityColumn());
- }
- writeRecommendedItems(userID, predictionVector, context);
- }
- private void reduceNonBooleanData(VarLongWritable userID,
- Iterable<PrefAndSimilarityColumnWritable> values,
- Context context) throws IOException, InterruptedException {
- /* each entry here is the sum in the numerator of the prediction formula */
- Vector numerators = null;
- /* each entry here is the sum in the denominator of the prediction formula */
- Vector denominators = null;
- /* each entry here is the number of similar items used in the prediction formula */
- Vector numberOfSimilarItemsUsed = new RandomAccessSparseVector(Integer.MAX_VALUE, 100);
- for (PrefAndSimilarityColumnWritable prefAndSimilarityColumn : values) {
- Vector simColumn = prefAndSimilarityColumn.getSimilarityColumn();
- float prefValue = prefAndSimilarityColumn.getPrefValue();
- /* count the number of items used for each prediction */
- Iterator<Vector.Element> usedItemsIterator = simColumn.iterateNonZero();
- while (usedItemsIterator.hasNext()) {
- int itemIDIndex = usedItemsIterator.next().index();
- numberOfSimilarItemsUsed.setQuick(itemIDIndex, numberOfSimilarItemsUsed.getQuick(itemIDIndex) + 1);
- }
- //vector.times(float) 是向量乘于一个数,也就是向量的每一个值都乘以这个数
- //vector.plus(vector) 是两个向量相加,每一个位置上的值相加
- //numerators是一个vecotr,每一个元素是这样的
- /*
- 例如index为item1的元素的值为:
- simility(item1, item_2)*pref(userid, item_2)
- + simility(item_1, item_3)*pref(userid, item_3)
- + simility(item1, item_4)*pref(userid, item_4)
- + ……
- + simility(item_1, item_2)*pref(userid, item_N)
- */
- // 注:其中simility(item1, item2)代表物品item1和物品item2的相似度 ,pref(userid, item)代表用于userid对item打分分值
- numerators = numerators == null
- ? prefValue == BOOLEAN_PREF_VALUE ? simColumn.clone() : simColumn.times(prefValue)
- : numerators.plus(prefValue == BOOLEAN_PREF_VALUE ? simColumn : simColumn.times(prefValue));
- simColumn.assign(ABSOLUTE_VALUES);
- //denominators是一个vecotr,每一个元素是这样的
- /*
- 例如index为item1的元素的值为:
- simility(item1, item_2)+ simility(item_1, item_3)+ …… + simility(item_1, item_2)*pref(userid, item_N)
- */
- // 注:其中simility(item1, item2)代表物品item1和物品item2的相似度
- denominators = denominators == null ? simColumn : denominators.plus(simColumn);
- }
- if (numerators == null) {
- return;
- }
- Vector recommendationVector = new RandomAccessSparseVector(Integer.MAX_VALUE, 100);
- Iterator<Vector.Element> iterator = numerators.iterateNonZero();
- while (iterator.hasNext()) {
- Vector.Element element = iterator.next();
- int itemIDIndex = element.index();
- /* preference estimations must be based on at least 2 datapoints */
- if (numberOfSimilarItemsUsed.getQuick(itemIDIndex) > 1) {
- /* compute normalized prediction */
- //计算归一化预测值
- double prediction = element.get() / denominators.getQuick(itemIDIndex);
- recommendationVector.setQuick(itemIDIndex, prediction);
- }
- }
- writeRecommendedItems(userID, recommendationVector, context);
- }
- }