搜索与图论

一、DFS 深搜

一路搜到底
回溯时要恢复现场

排列数字(AcWing)

#include <iostream>

using namespace std;

const int N=10;

int n;
int path[N];
bool st[N];//判断一个数是否被用过了

void dfs(int u)
{
    if (u==n) 
    {
        for (int i=0;i<n;i++)
            cout<<path[i]<<' ';
        cout<<"\n";
        return;
    }
    for (int i=1;i<=n;i++)
    {
        if (!st[i])
        {
            path[u]=i;
            st[i]=true;
            dfs(u+1);
            st[i]=false;//回溯时恢复现场
        }
    }
}

int main()
{
    cin>>n;
    
    dfs(0);//从0开始深搜
    
    return 0;
}

n-皇后问题

剪枝
提前判断是否可行

#include <iostream>

using namespace std;

const int N=10;

int n;
int path[N];
char g[N][N];
bool col[N],dg[N],udg[N];//每列、每个对角线、反对角线

void dfs(int u)
{
    if (u==n)
    {
        for (int i=0;i<n;i++)
        {
            for (int j=0;j<n;j++)
                cout<<g[i][j];
            cout<<"\n";
        }
        cout<<"\n";
        return;
    }
    for (int i=0;i<n;i++)
    {
        if (!col[i] && !dg[u+i] && !udg[n+i-u])
        {
            col[i]=dg[u+i]=udg[n+i-u]=true;
            g[u][i]='Q';
            dfs(u+1);
            col[i]=dg[u+i]=udg[n+i-u]=false;
            g[u][i]='.';
        }
    }
}



int main()
{
    cin>>n;
    
    for (int i=0;i<n;i++)
        for (int j=0;j<n;j++)
            g[i][j]='.';
    
    dfs(0);
    
    return 0;
}

二、BFS 宽搜

离起点越来越远
当所有边权都是1时,可以用BFS求最短路问题

走迷宫

给定一个n*m的二维整数数组,由0和1组成
0表示可以走,1表示不能走
从左上角(1,1)处到右下角(n,m)处,最少移动多少次
1<=n,m<=100

输入样例:
5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0

输出样例:
8

三、树与图的遍历

1. 树与图的存储

无向图:存储两条有向图 a->b 和 b->a
因此只考虑有向图的存储

方法:
(1)邻接矩阵 g[a][b] 存储有向边a->b
(2)邻接表(更省空间)

int h[N],e[N],ne[N],idx;

//添加一条有向边a->b
void add(int a, int b)
{
	e[idx]=b, ne[idx]=h[a], h[a]=idx++;
}

//初始化
idx=0;
memset(h,-1,sizeof h);

2. 树与图的遍历

(1)深度优先遍历

int dfs(int u)
{
	st[u]=true;//标记当前点已经被搜过了

	for (int i=h[u];i!=-1;i=ne[i])
	{
		int j=e[i];
		if (!st[j]) dfs(j);
	}
}

例题:树的重心

一棵树中包含n个结点(1-n)和n-1条无向边
找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值
重心定义:将重心删除后,剩余各个连通块中点数的最大值最小

输入格式
第一行 n表示结点数
接下来n-1行,输入a和b,表示a和b存在一条边

输入样例
9
1 2
1 7
1 4
2 8
2 5
4 3
3 9
4 6

输出样例
4

#include <iostream>
#include <cstring>

using namespace std;

const int N=1e5+10,M=2*N;

int ans=N;

int n;
int e[M],h[N],ne[M],idx;
bool st[N];

void add(int a, int b)
{
    e[idx]=b, ne[idx]=h[a],h[a]=idx++;
}

int dfs(int u)//返回以u为根的子树中点的数量
{
    st[u]=true;
    
    int sum=1, res=0;
    for (int i=h[u];i!=-1;i=ne[i])
    {
        int j=e[i];
        if (!st[j])
        {
            int s=dfs(j);
            res=max(res, s);
            sum+=s;
        }
    }
    res=max(res,n-sum);
    ans=min(ans,res);
    return sum;
    
}

int main()
{
    cin>>n;
    memset(h,-1,sizeof h);
    for (int i=0;i<n;i++)
    {
        int a,b;
        cin>>a>>b;
        add(a,b);
        add(b,a);//无向边
    }
    
    dfs(1);
    
    cout<<ans;
        
}

(2)宽度优先遍历

图中点的层次

给定n个点m条边的有向图,可能存在重边和自环
所有边的长度都是1,点的编号为1-n
求出1到n的最短距离(走不到输出-1)

输入样例
4 5
1 2
2 3
3 4
1 3
1 4

输出样例
1

#include <iostream>
#include <cstring>

using namespace std;

const int N=1e5+10;

int n,m;
int h[N],e[N],ne[N],idx;
int d[N],q[N];//d[]存储距离,q[]存储队列

void add(int a, int b)
{
    e[idx]=b, ne[idx]=h[a], h[a]=idx++;
}

int bfs()
{
    int hh=0,tt=0;
    q[0]=1;
    memset(d,-1,sizeof d);
    d[1]=0;
    
    while(hh<=tt)//队列不空
    {
        int t=q[hh++];
        
        for (int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if (d[j]==-1)
            {
                d[j]=d[t]+1;
                q[++tt]=j;
            }
        }
    }
    return d[n];
}

int main()
{
    cin>>n>>m;
    memset(h,-1, sizeof h);
    
    for (int i=0;i<m;i++)
    {
        int a,b;
        cin>>a>>b;
        add(a,b);
    }
    
    cout<<bfs();
}

3. 拓扑排序

有向图才有拓扑序列
拓扑序列:由图中所有点构成的序列,且对于图中的每一条有向边(x,y),x在序列中都出现在y之前

环状有向图一定不存在拓扑序列
有向无环图一定存在拓扑序列

入度为0的点都可以排在最前面的位置

有向图的拓扑序列
n个点m条边的有向图
点的编号是1-n,可能存在重编或自环
输出任意一个拓扑序列,不存在则输出-1

输入样例
3 3
1 2
2 3
1 3

输出样例
1 2 3

#include <iostream>
#include <cstring>

using namespace std;

const int N=1e5+10;

int n,m;
int h[N],e[N],ne[N],idx;
int q[N],d[N];//q[]存储队列,d[]存储点的入度

void add(int a, int b)
{
    e[idx]=b, ne[idx]=h[a], h[a]=idx++;
}

bool topsort()
{
    int hh=0,tt=-1;
    
    for (int i=1;i<=n;i++)
    {
        if (!d[i])
            q[++tt]=i;
    }
    
    while(hh<=tt)
    {
        int t=q[hh++];
        
        for (int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            d[j]--;
            if (d[j]==0) q[++tt]=j;
        }
    }
    return tt==n-1;//所有点都入队,说明存在
}

int main()
{
    cin>>n>>m;
    memset(h,-1,sizeof h);
    
    for (int i=0;i<m;i++)
    {
        int a,b;
        cin>>a>>b;
        add(a,b);
        d[b]++;//b的入度
    }
    
    if (topsort())
    {
        for (int i=0;i<n;i++)
            cout<<q[i]<<' ';
    }
    else puts("-1");
    
    return 0;
}

四、最短路

最短路:

  1. 单源最短路
    (1) 所有边权都是正数
    朴素dijkstra算法
    堆优化版的dijkstra算法
    (2) 存在负权边
  2. 多源汇最短路(多个起点和终点)

难点在于建图

1. 朴素dijkstra算法

Dijkstra求最短路 I

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N=510;

int n,m;
int g[N][N];//存储每条边
int dist[N];//从起点到每个点的最短距离
bool st[N];//存储每个点的最短路是否已经确定

int dijsktra()
{
    memset(dist,0x3f,sizeof dist);
    dist[1]=0;
    
    for (int i=0;i<n;i++)
    {
        int t=-1;//在还未确定最短路的点中,寻找距离最小的点
        for (int j=1;j<=n;j++)
        {
            if (!st[j] && (t==-1 || dist[t]>dist[j]))
                t=j;
        }
        
        //用t更新其它点的距离
        for (int j=1;j<=n;j++)
            dist[j]=min(dist[j],dist[t]+g[t][j]);
             
        st[t]=true;
    }
    
    if (dist[n]==0x3f3f3f3f) return -1;
    return dist[n];
}

int main()
{
    cin>>n>>m;
    
    memset(g,0x3f,sizeof g);
    
    while(m--)
    {
        int a,b,c;
        cin>>a>>b>>c;
        g[a][b]=min(g[a][b],c);
    }
    
    int t=dijsktra();
    
    printf("%d",t);
}

2. 堆优化版dijkstra

空间优化

Dijkstra求最短路 II

#include <iostream>
#include <queue>
#include <cstring>
#include <algorithm>

using namespace std;

const int N=150010;

typedef pair<int, int>PII;

int n,m;
int h[N],e[N],ne[N],w[N],idx;
int dist[N];//每个点到起点的距离
bool st[N];//存储每个点的最小距离是否已经确定

void add(int a,int b,int c)
{
    e[idx]=b, w[idx]=c, ne[idx]=h[a], h[a]=idx++;
}

int dij()
{
    memset(dist,0x3f,sizeof dist);
    dist[1]=0; 
    
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0,1});//first存储距离,second存储节点编号
    
    while(heap.size())
    {
        auto t=heap.top();
        heap.pop();
        
        int ver=t.second, distance=t.first;
        if (st[ver]) continue;
        st[ver]=true;
        
        for (int i=h[ver];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dist[j]>distance+w[i])
            {
                dist[j]=distance+w[i];
                heap.push({dist[j],j});
            }
        }
    }
    
    if (dist[n]==0x3f3f3f3f) return -1;
    return dist[n];
    
}

int main()
{
    scanf("%d%d",&n,&m);
    
    memset(h,-1,sizeof h);
    
    while(m--)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
    }
    
    int t=dij();
    printf("%d",t);
}

3. Floyd算法

Floyd求最短路

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
再给定k个询问,每个询问包含x和y,表示查询从x到y的最短距离,如不存在,则输出 impossible。
数据保证不存在负权回路。

输入格式
第一行包含整数 n、m和k。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
接下来k行,每行包含两个整数x,y,表示询问x到y的最短距离。

输出格式
共k行,每行输出一个整数,表示询问的结果, 如果路径不存在,则输出 impossible。

数据范围
1≤n≤200,
1≤k≤n^2,
1≤m≤20000,
图中涉及边长绝对值均不超过 10000。

输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3

输出样例:
2

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N=210, INF=1e9;

int n,m,Q;
int d[N][N];

void floyd()
{
    for (int k=1;k<=n;k++)
        for (int i=1;i<=n;i++)
            for (int j=1;j<=n;j++)
                d[i][j]=min(d[i][j], d[i][k]+d[k][j]);
}

int main()
{
    scanf("%d%d%d",&n,&m,&Q);
    
    for (int i=1;i<=n;i++)
        for (int j=1;j<=n;j++)
        {
            if (i==j) d[i][j]=0;
            else d[i][j]=INF;
        }
        
    while (m--)
    {
        int a,b,w;
        scanf("%d%d%d",&a,&b,&w);
        
        d[a][b]=min(d[a][b],w);
    }
    
    floyd();
    
    while(Q--)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        if (d[x][y]>INF/2) puts("impossible");
        else printf("%d\n",d[x][y]);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值