Tensorrt实现solov2加速

本文介绍了如何使用TensorRT将PyTorch实现的SOLOv2模型转换为FP16模型,以实现推理加速。在COCO数据集上表现出色的SOLOv2,通过TensorRT的转换和优化,旨在达到实时运行的效果。虽然转换后的模型在大尺寸输入下仍较慢,但表明了进一步优化模型结构的必要性。
摘要由CSDN通过智能技术生成

SOLO简介

solo系列网络是由Xinlong Wang提出的单阶段实例分割网络。其搭建在mmdetection库中。solov2主干网络如下图所示:
SOLO结构
其在COCO数据集上获得了较高的AP,并且由于其单阶段实例分割的特点,方面直接实现端到端的部署。因此,我们可以采用pytorch转onnx再转tensorrt的方式实现solo的半精度、int8加速,达到实时运行的目的。

环境依赖

我们采用TensorRT7.1的部署环境(TensorRT 7.0的instance normalization层存在bug,造成推理结果不正确,参见gihub该问题的讨论)。具体测试环境如下:

	Ubuntu 18.04
	opencv 4
	CUDA 10.1
	TensorRT 7.1.3
	pytorch 1.3

快速开始

以下代码展示了如何利用tensorrt的python接口快速进行pytorc

  • 6
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值