Tensorrt实现solov2加速
SOLO简介
solo系列网络是由Xinlong Wang提出的单阶段实例分割网络。其搭建在mmdetection库中。solov2主干网络如下图所示:
其在COCO数据集上获得了较高的AP,并且由于其单阶段实例分割的特点,方面直接实现端到端的部署。因此,我们可以采用pytorch转onnx再转tensorrt的方式实现solo的半精度、int8加速,达到实时运行的目的。
环境依赖
我们采用TensorRT7.1的部署环境(TensorRT 7.0的instance normalization层存在bug,造成推理结果不正确,参见gihub该问题的讨论)。具体测试环境如下:
Ubuntu 18.04
opencv 4
CUDA 10.1
TensorRT 7.1.3
pytorch 1.3
快速开始
以下代码展示了如何利用tensorrt的python接口快速进行pytorc