浪里个浪
Problem Description
TonyY是一个喜欢到处浪的男人,他的梦想是带着兰兰姐姐浪遍天朝的各个角落,不过在此之前,他需要做好规划。
现在他的手上有一份天朝地图,上面有n个城市,m条交通路径,每条交通路径都是单行道。他已经预先规划好了一些点作为旅游的起点和终点,他想选择其中一个起点和一个终点,并找出从起点到终点的一条路线亲身体验浪的过程。但是他时间有限,所以想选择耗时最小的,你能告诉他最小的耗时是多少吗?
Input
包含多组测试数据。
输入第一行包括两个整数n和m,表示有n个地点,m条可行路径。点的编号为1 - n。
接下来m行每行包括三个整数i, j, cost,表示从地点i到地点j需要耗时cost。
接下来一行第一个数为S,表示可能的起点数,之后S个数,表示可能的起点。
接下来一行第一个数为E,表示可能的终点数,之后E个数,表示可能的终点。
0小于S, E≤n≤100000,0<m≤100000,0<cost≤100。
Output
输出他需要的最短耗时。
Sample Input
4 4
1 3 1
1 4 2
2 3 3
2 4 4
2 1 2
2 3 4
Sample Output
1
思路:
假如极限状态下有接近10w个起点,我以为10w次spfa会超时,结果最后竟然没超时。。(是数据水?)
其实只要1次spfa就行了,我们可以另外建一个点root,让root到所有起点的距离都为0,然后一遍spfa(root),最后得出到每个点的dis,就是起点到每个点的最短距离
代码:
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn=100000+10;
const int inf=0x3f3f3f3f;
struct node
{
int v,w,next;
}E[maxn];
int d[maxn],first[maxn],inq[maxn],a[maxn],b[maxn];
int n,m,len,st_num,ed_num;
void spfa()
{
memset(inq,0,sizeof(inq));
memset(d,inf,sizeof(d));
queue<int>q;
int st=0;
d[st]=0,inq[st]=1;
q.push(st);
while(!q.empty())
{
st=q.front();
q.pop();
inq[st]=0;
for(int i=first[st];~i;i=E[i].next)
{
int v=E[i].v,w=E[i].w;
if(d[v]>d[st]+w)
{
d[v]=d[st]+w;
if(!inq[v])
{
inq[v]=1;
q.push(v);
}
}
}
}
int ans=inf;
for(int i=0;i<ed_num;++i)
if(d[b[i]]<ans)
ans=d[b[i]];
printf("%d\n",ans);
}
void add_edge(int u,int v,int w)
{
E[len].v=v,E[len].w=w;
E[len].next=first[u];
first[u]=len++;
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
len=0;
memset(first,-1,sizeof(first));
int u,v,w;
for(int i=0;i<m;++i)
{
scanf("%d%d%d",&u,&v,&w);
add_edge(u,v,w);
}
scanf("%d",&st_num);
for(int i=0;i<st_num;++i)
{
scanf("%d",&a[i]);
add_edge(0,a[i],0);
}
scanf("%d",&ed_num);
for(int i=0;i<ed_num;++i)
scanf("%d",&b[i]);
spfa();
}
return 0;
}

722

被折叠的 条评论
为什么被折叠?



