时间复杂度O(nlgn)且空间复杂度O(1)的排序算法:**堆排序(Heap Sort)**

要解决这道题,需结合排序算法的时间复杂度、稳定性、空间复杂度三个核心指标,对常见O(nlgn)级排序算法的特性进行对比分析:

(62)时间复杂度O(nlgn)且稳定的排序算法:归并排序(Merge Sort)

关键解析:O(nlgn)排序算法的稳定性对比

首先明确核心概念:

  • 稳定性:排序后,相同值元素的相对位置保持不变(如原序列中“5(第1个)”在“5(第2个)”前,排序后仍保持此顺序);
  • O(nlgn)级排序算法:常见的有归并排序、快速排序、堆排序、希尔排序(希尔排序平均复杂度接近O(nlgn),但最坏为O(n²),不满足严格O(nlgn))。

各算法稳定性与空间复杂度对比如下表:

排序算法时间复杂度(最坏/平均)稳定性空间复杂度核心特点
归并排序O(nlgn) / O(nlgn)✅ 稳定O(n)分治思想,通过合并有序子序列实现,稳定且复杂度严格O(nlgn)
快速排序O(n²) / O(nlgn)❌ 不稳定O(logn)~O(n)分治思想, pivot选择影响性能,最坏O(n²),且不稳定(如交换时打乱相同值顺序)
堆排序O(nlgn) / O(nlgn)❌ 不稳定O(1)利用堆的堆顶特性排序,交换堆顶与末尾元素时会打乱相同值顺序,不稳定
希尔排序O(n²) / 接近O(nlgn)❌ 不稳定O(1)插入排序的改进,最坏复杂度不满足严格O(nlgn),且不稳定

综上,只有归并排序同时满足“时间复杂度O(nlgn)”和“稳定”两个条件,因此(62)的答案为归并排序

(63)时间复杂度O(nlgn)且空间复杂度O(1)的排序算法:堆排序(Heap Sort)

关键解析:O(nlgn)排序算法的空间复杂度对比

核心概念:

  • 空间复杂度O(1):排序过程中不依赖额外的数组或大量递归栈空间,仅使用常数级临时变量(即“原地排序”)。

结合上述表格的空间复杂度列,进一步分析:

  • 归并排序:需额外数组存储合并后的有序序列,空间复杂度O(n),不满足O(1);
  • 快速排序:递归实现需O(logn)~O(n)的栈空间(最坏O(n)),非原地排序,不满足O(1);
  • 堆排序:基于“堆”数据结构(通常用数组表示原序列,无需额外空间),排序过程仅需1个临时变量存储交换元素,空间复杂度O(1),且时间复杂度严格O(nlgn);
  • 希尔排序:虽空间复杂度O(1),但最坏时间复杂度O(n²),不满足严格O(nlgn)。

综上,只有堆排序同时满足“时间复杂度O(nlgn)”和“空间复杂度O(1)”两个条件,因此(63)的答案为堆排序

最终答案

(62) 归并排序
(63) 堆排序
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bol5261

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值