庄泽峰:新媒体运营与短视频营销及顺势而为

《推广》06
新媒体运营与短视频营销及顺势而为
作者:庄泽峰
在这里插入图片描述
如今很多企业及个人放弃网络推广,转向主流的新媒体运营及短视频营销,这是符合社会发展需求的,也可以说是顺势而为。不得不承认,新媒体运营和短视频营销具有显著的优势。在当下网络信息爆炸的时代,消费者的注意力被大量碎片化信息分散,新媒体平台凭借其智能推荐算法,能够精准地将内容推送到目标受众面前。这种给信息插上翅膀让它们主动去找相对应人群的方式,远远优于让人去搜索相对应信息的方式。换言之,信息找人的效率远胜于人找信息。诚然,网络推广在人找信息的阶段,曾发挥了巨大作用。它预先在网络各个渠道铺设大量信息,而人们通过搜索引擎等工具来寻找自己所需的产品、服务及知识。在该阶段,企业确实在网络推广中占据主动地位,将自己的网站、产品、服务等信息进行广泛传播,并等待目标受众的搜索与查询。

由此来看,人找信息是人在发挥主观能动性,在网络上进行推广是一种主动出击的行为,这里面推广与编辑人员是重点。而到信息找人的阶段,人的主观能动性被削弱,智能推荐算法将相关信息推送给到相关人群,不再需要人去推广,AI已经把信息分配好,但对信息的编辑与审核还需要人来完成,因此,在新媒体平台中,侧重于内容创作的运营人员远比推广人重要。可见,随着互联网的发展及用户行为的演变,网络推广这种模式的局限性逐渐显现。人们在面对海量的搜索结果时,往往会陷入选择困境,他们需要花费大量的时间和精力去筛选对自己真正有用的信息。这种由人主动去搜索并获取信息的方式是相对被动的,而且很多潜在的需求可能因为搜索关键词的局限性,或是搜索频率较低,导致被忽视。相比之下,新媒体平台的智能推荐算法像是一位贴心的助手,它通过对用户行为全方位的学习与分析,能够敏锐地捕捉到用户潜在的兴趣点。无论是用户在浏览视频时的短暂停留,还是在阅读文章时的反复点击,这些细微的动作都成为算法判断用户喜好的依据。

如今在视频号、抖X、快手等短视频平台,它们会根据用户的浏览历史、点赞、评论等行为数据,为用户定制个性化的视频推荐流。例如,一位年轻用户经常浏览健身类的短视频,在后续的时间里,平台就会给他推荐更多与健身相关的视频,包括健身器材的使用教程、最新的健身计划以及健身达人的经验分享等。这种精准推送的方式极大地提高了内容的传播效率,也让用户更容易发现自己感兴趣的内容,进而提升用户对平台的依赖度及满意度。从营销的角度来看,企业在新媒体平台利用智能推荐算法的特性,可以更加高效地触达目标客户群体。他们可以根据不同的产品定位及营销目标,定制多样化的内容,并且精准投放到对应的用户圈层中。这样一来,企业能够以更少的投入获得更高的营销回报,同时也能够建立起更具忠诚度的客户群体。可以说,在新媒体时代,企业不再仅仅是产品的提供者,更是内容的创作者和传播者,他们通过与用户的深度互动,共同创造出独特的品牌价值及企业形象。而这种效应就被大家称之为“IP”,并被广泛应用在个人网红的运营中,例如papi酱。在papi酱之前,也有很多网红,但他们没有在商业中体现出个人的品牌形象及价值,例如女流。女流(石悦)作为早期游戏主播,她论学历论才华论颜值都不会比papi酱(姜逸磊)逊色,但她没有赶上新媒体的浪潮,所以未能形成一个IP。

跟网络推广相比,显然新媒体及短视频营销的传播速度更快、范围更广。一个有趣的短视频可能在短短几分钟内就能获得数以万计甚至百万计的播放量,这种病毒式传播效果是网络推广难以企及的。而且,新媒体运营和短视频营销的成本相对较低,对于众多中小企业及个人创业者来说门槛降低。他们无需投入大量资金用于建立复杂的网站,只需要一部手机、一个创意视频就能开启营销之旅。此外,新媒体运营和短视频营销具有很强的互动性。新媒体平台为企业和用户之间搭建了双向沟通的桥梁。用户可以通过点赞、评论、分享等方式迅速表达对内容的看法及态度,企业则能够及时回复并根据用户反馈调整营销策略。而在网络推广中,企业与用户之间的互动往往是单向的,用户大多只能被动接受信息,难以即时反馈意见。

除此,短视频营销在视觉呈现上具有独特的优势。短视频以其生动、直观、富有感染力的画面,能够在短时间内吸引用户的注意力并传达核心信息。从内容传播的层面来看,短视频的传播具有很强的裂变效应。当一个有趣的短视频被用户认可后,用户不仅会主动分享给亲朋好友,还可能会在社交媒体上进行转发和推荐,从而形成几何级数的传播增长。这种裂变式的传播方式,能够在短时间内迅速扩大品牌的影响力和覆盖面,使得品牌能够在竞争激烈的市场中迅速崭露头角。另外,新媒体运营和短视频营销有助于培养用户的忠诚度。通过持续的优质内容输出及与用户的积极互动,用户会对品牌产生情感上的共鸣。他们不再仅仅是消费者,更是品牌的传播者和倡导者。而这种用户忠诚度的建立,是企业在市场竞争中持续发展的坚实基础。

综上所述,新媒体运营和短视频营销确实在许多方面展现出显著的优势,但我们不能因此完全放弃其它营销方式,比如网络推广。毕竟每一种营销策略都有其独特的作用和适用场景。企业应该采用整合营销的策略,将多种营销及推广方式结合起来,以实现跨渠道的品牌传播。这种多渠道的营销方式可以帮助企业建立一个全面的品牌形象,同时满足不同用户群体的需求。但在实施整合营销时,企业需要注重内容的连贯性和一致性,确保无论用户通过哪个渠道接触品牌,都能获得一致的品牌体验。总之,新媒体运营和短视频营销是当今营销领域的重点。

内容概要:本文档介绍了基于 Matlab 实现的 TVFEMD-IMF 能量熵增量的数据降噪方法的具体项目实例,详细展示了从理论背景、项目特点到实现细节及应用领域的方方面面。文章首先介绍了项目的背景意义,重点解决了非平稳信号中的噪声成分对后期数据分析带来的难题。文中提到的关键技术——时间变分滤波经验模态分解(TVFEMD),以及通过引入能量熵增量来进行自动选择IMF的有效方法。项目采用模块化设计理念,实现了从数据导入、TVFEMD分解、熵增量化计算直至最终信号重构全过程,并附带有详尽的代码解析图形展示,便于理解和验证。除此之外,还包括详细的GUI界面开发指导和技术延伸讨论,探讨了如深度学习结合的可能性。 适合人群:具有一定数学建模和信号处理基础知识的专业人士,尤其是那些从事信号分析降噪工作的科研工作者和工程师。 使用场景及目标:①适用于对各种复杂工况下(如工业、医药、通信等行业)所收集的非平稳、易混杂有强噪声的实际信号做前期净化;②为这些信号的后续精确特征抽取、故障诊断以及其他更高层次的研究打下良好基础;③同时提供了一个开放性的技术交流框架,鼓励进一步的技术革新和跨学科合作。 其他说明:该项目强调实用性和可操作性,不仅限于单一行业内的简单降噪任务,更致力于构建一套通用性强、拓展性高的信号处理工具包。同时也在积极探寻其他前沿技术相衔接的发展道路,比如借助大数据分析、人工智能算法等现代科技手段,力求达到更佳的降噪成效并拓宽其应用范围。另外值得注意的是,为保证算法高效运行及结果可信,开发者还需关注数据质量预处理环节、合理挑选参数配置,做好边界条件处置等工作,以确保最佳的整体效果。
内容概要:本文详细分析了数学建模大赛中常见的数据结构及其应用场景、优化技巧和实战案例,旨在帮助参赛团队高效地处理数据。文章首先阐述了数据结构的核心作用——包括数据组织、算法加速、空间优化以及逻辑映射;接着分类介绍了线性结构、树形结构、图结构和高级结构的特点和典型应用场景,例如用哈希表进行快速查找,通过NumPy提高矩阵运算速度等;然后给出了一套基于问题特征的数据结构选择方法论,并通过两个实例(城市交通流量预测、疫情传播模拟),展示了如何综合运用多种数据结构解决问题;最后提出了关于空间换时间、数据压缩及索引优化等方面的技巧,推荐了若干学习资源及工具库。 适合人群:参加全国大学生数学建模比赛或其他相关赛事的学生队伍;对计算机科学中的数据结构和算法感兴趣的研究人员。 使用场景及目标:为建模团队提供理论指导和技术支持,便于他们选择合适的抽象数据类型来表示具体对象,优化程序性能;使队员能够熟练应用所学的数据结构进行高效的问题求解;帮助参者理解不同类型的比赛题目可能涉及的不同侧重点并作出准备。 阅读建议:考虑到实际比赛环境中需要灵活运用各类数据结构的知识,读者应当深入研究文中列举的实际例子,并动手练习给出的小段代码;此外,在备战阶段可以根据本文提出的高频考察领域开展针对性复习。对于新手来说,可以从最简单的基本概念出发,逐步建立起完整而系统的认知体系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值