前缀和与差分

数列的前缀和: 
sum[i]表示a[1]~a[i]的和 
用处1:求i~j的和sum[j]-sum[i-1] 
用处2:区间修改。设置一个change数组。当区间[i,j]上要加k时,我们令change[i]+=k,令change[j+1]-=k。如果我们对change数组求前缀和的话,前缀和sum_change[i]就是i这个位置变动的值

树的前缀和有两种 
– 根路径前缀和sum2[i],指i到根节点所有节点的权值之和。 
– 子树前缀和sum1[i],指i的子树(包括i本身)所有节点的权值之和。

树的前缀和用处 
根路径前缀和,可以用来求路径节点权值和(配合lca食用) 
–假如要求x到y路径的权值和,x,y的lca是z。则可以用sum[x]+sum[y]-2sum[z]+value[z] 
子树前缀和,可以用来做路径修改(也得配合lca食用) 
–设定一个修改数组change。如果要对x到y路径上的所有点权值+k,lca为z。那么change[x]+=k,change[y]+=k,change[z]-=k,change[fa[z]]-=k。这样如果最后对change[i]求前缀和的话,最后得到的结果就是i权值的修改量 
–特点:可以O(1)修改,但是只能一次查询(因为要求前缀和O(n))

前缀和的使用不都是用来差分的? 
二维数组的差分:Ans=sum[x2][y2]-sum[x2][y1-1]-sum[x1-1][y2]+sum[x1-1][y1-1] 
二维数组的修改:用数组C存修改信息。在C[x1][y1]处加上a,在C[x2+1][y1]和C[x1][y2+1]处减a,在C[x2+1][y2+1]再加上a。 
最后(i,k)位置上变化的数值就是C数组在(i,k)位置的前缀和。 
基本就是 
这里写图片描述

树上差分经典思路 
①利用dfs序的时间戳,一个点拆成两个点,每次在in+1,在out-1,然后bit统计前缀和,资瓷动态修改和查询子树访问次数。用于子树打标记。 
②对于点x,y设r=lca(x,y)。在x+1,y+1,r-2,然后从所有叶节点往上累加。用于树链打标记,资瓷查询某条边的访问次数。 
③对于点x,y设r=lca(x,y)。在x+1,y+1,r-1,father[r]-1,然后从所有叶节点往上累加。用于树链打标记,资瓷查询某个点的访问次数。


  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
前缀和差分是一类常用的算法,它们常常被用来优化一些区间操作的问题,如求区间和、区间最大值/最小值等等。下面我们将分别介绍前缀和差分的定义、用法和常见问题。 ## 前缀和 前缀和,顾名思义,就是把前面所有数的和都求出来,用一个数组存起来,以便之后的查询。 ### 定义 给定一个长度为 $n$ 的序列 $a$,令 $s_i = \sum_{j=1}^{i}a_j$,则 $s$ 称为序列 $a$ 的前缀和数组。 ### 用法 前缀和的主要作用是用 $O(1)$ 的时间复杂度求出一个区间 $[l,r]$ 的和,即 $s_r - s_{l-1}$。这是因为 $s_r$ 存储了序列从 $1$ 到 $r$ 的和,而 $s_{l-1}$ 存储了序列从 $1$ 到 $l-1$ 的和,因此区间 $[l,r]$ 的和可以通过两个前缀和相减计算得出。 前缀和的时间复杂度为 $O(n)$,因为需要遍历一遍序列求出前缀和数组。但是,如果有多个查询需要求区间和,那么使用前缀和可以将每次查询的时间复杂度降低到 $O(1)$。 ### 代码实现 下面是使用前缀和求区间和的代码实现: ```cpp vector<int> a; // 原序列 vector<int> s(a.size() + 1); // 前缀和数组 // 计算前缀和 for (int i = 1; i <= a.size(); i++) { s[i] = s[i - 1] + a[i - 1]; } // 查询区间 [l, r] 的和 int sum = s[r] - s[l - 1]; ``` ## 差分 差分前缀和相反,它主要用来对区间进行修改。我们可以利用差分数组进行区间修改,并最终得到修改后的序列。 ### 定义 给定一个长度为 $n$ 的序列 $a$,令 $d_i = a_i - a_{i-1}$($d_1 = a_1$),则 $d$ 称为序列 $a$ 的差分数组。 ### 用法 差分的主要作用是对区间进行修改。假设我们需要将区间 $[l,r]$ 的数加上 $k$,我们可以将差分数组的 $d_l$ 加上 $k$,将 $d_{r+1}$ 减去 $k$。这样,对差分数组求前缀和,就可以得到修改后的序列。 具体来说,我们可以按照以下步骤进行区间修改: 1. 对差分数组的 $d_l$ 加上 $k$; 2. 对差分数组的 $d_{r+1}$ 减去 $k$; 3. 对差分数组求前缀和,得到修改后的序列。 差分的时间复杂度为 $O(n)$,因为需要遍历一遍序列求出差分数组。但是,如果有多次区间修改需要进行,那么使用差分可以将每次修改的时间复杂度降低到 $O(1)$。 ### 代码实现 下面是使用差分进行区间修改的代码实现: ```cpp vector<int> a; // 原序列 vector<int> d(a.size() + 1); // 差分数组 // 计算差分数组 for (int i = 1; i < a.size(); i++) { d[i] = a[i] - a[i - 1]; } // 修改区间 [l, r],将数加上 k d[l] += k; d[r + 1] -= k; // 对差分数组求前缀和,得到修改后的序列 for (int i = 1; i < d.size(); i++) { a[i] = a[i - 1] + d[i]; } ``` ## 常见问题 ### 1. 差分数组的长度是多少? 差分数组的长度应该比原序列长度多 1,因为 $d_1 = a_1$。 ### 2. 什么情况下使用前缀和?什么情况下使用差分? 如果需要进行多次区间查询,那么使用前缀和可以将每次查询的时间复杂度降低到 $O(1)$;如果需要进行多次区间修改,那么使用差分可以将每次修改的时间复杂度降低到 $O(1)$。 ### 3. 前缀和差分的本质区别是什么? 前缀和差分都是用来优化区间操作的算法,它们的本质区别在于: - 前缀和是通过预处理前缀和数组来优化区间查询; - 差分是通过预处理差分数组来优化区间修改。 ### 4. 前缀和差分能否同时使用? 当然可以。如果需要同时进行区间查询和修改,我们可以先使用差分数组对区间进行修改,然后再对差分数组求前缀和,得到修改后的序列。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值