论文分享-自监督的Sentence Bi & Cross Encoder

本文介绍了论文《TRANS-ENCODER: UNSUPERVISED SENTENCE-PAIR MODELLING THROUGH SELF-AND MUTUAL-DISTILLATIONS》的主要思想,该论文提出了一种结合自监督学习和知识蒸馏的方法,用于训练效果优秀的Sentence Bi-Encoder和Cross-Encoder。通过Bi-Encoder和Cross-Encoder之间的相互知识蒸馏,实现了模型的自我增强,提高了语义相似度学习的性能。
摘要由CSDN通过智能技术生成

最近读到一个很有意思的论文:TRANS-ENCODER: UNSUPERVISED SENTENCE-PAIR MODELLING THROUGH SELF- AND MUTUAL-DISTILLATIONS 。

https://arxiv.org/pdf/2109.13059.pdf​arxiv.org

该论文给出了一个颇为有趣的在NLP的sentence相似度学习上,如何同时自监督的去训练出效果SOTA的Bi-Encoder和Cross-Encoder。

背景知识

首先,我们简单的介绍下概念:所谓Bi-Encoder,先分别计算两个句子的特征,然后计算特征的相似度 (比如cosine similarity);而Cross-Encoder,是将两句话一起输入模型,可以直接输出两个句子的语义一致性得分。一般来说Cross-Encoder效果会优于Bi-Encoder,但是Cross-Encoder的计算量要大得多(参考【3】)。

图片来自https://www.sbert.net/docs/pretrained_cross-encoders.html

接下来,我们站在比较高的视角,去大致理出一个关于sentence similarity的学习的技术发展脉络:

图二. 句子的语义相似性学习的发展脉络图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值