给定一个正整数int n,请返回一个数,代表上楼的方式数。保证n小于等于100。为了防止溢出,请返回结果Mod 1000000007的值。
我们走的最后一步,有几种可能。就是两种,一种是走一步,一种是走两步。拿我们走到十台阶的可能数就可以分为两类F(8)和F(9)。那么我们F(10)=F(9)+F(8),
边界时F(1)=0,F(2)=1
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int b = sc.nextInt();
int a[] = new int[b];
for (int i = 0; i < b; i++) {
a[i] = sc.nextInt();
}
for (int i = 0; i < b; i++) {
System.out.println(find2(a[i]));
}
}
//方法一通过递归解决(会造成算法超时)
private static int find(int n) {
int number;
if (n == 0 || n == 1) {
number = 0;
} else if (n == 2) {
number = 1;
} else if (n == 3) {
number = 2;
} else {
number = find(n - 1) + find(n - 2);
}
return number;
}
//方法二,通过动态规划解决
private static int find2(int n) {
int s[] = new int[101];
s[0]=0;
s[1]=0;
s[2]=1;
s[3]=2;
for(int i=4;i<=n;i++)
{
s[i]=(s[i-2]+s[i-1])%1000000007;
}
return s[n];
}
}