题目要求:
输入一棵树的根节点,输入两个被观察节点,求这两个节点的最低(最近)公共祖先。
解题思路:
此题比较开放,主要是对于“树”没有做明确说明,所以原书中就对树的可能情况做了假设,然后就衍生出多种思路
1)如果是二叉,搜索树:
遍历找到比第一个节点大,比第二个节点小的节点即可
2)如果是父子间有双向指针的树:
由下往上看,转化为找两个链表的第一个公共节点问题
3)如果只是一个包含父到子的指针的普通树:
3.1)如果不能使用额外空间,从根节点开始判断他的子树是否包含那两个节点,找到最小的的子树即可
时间复杂度o(n^2)(此为最差,平均不太好算。。。),空间复杂度为o(1)
3.2) 如果能用额外空间,可以遍历两次(深度优先)获取根节点到那两个节点的路径,然后求两个路径的最后一个公共节点
时间复杂度o(n),空间复杂度o(logn)
(1)(2)比较简单。下面仅对(3),以下图所示的树为例,进行思路实现与求解验证
A
/ \
B C
/ \
D E
/ \ / | \
F G H I J
package chapter7;
import java.util.*;
/**
* Created with IntelliJ IDEA
* Author: ryder
* Date : 2017/8/22
* Time : 17:15
* Description:树中两个节点的最低公共祖先
*
**/
public class P326CommonParentInTree {
public static class CommonTreeNode{
public char val;
public List<CommonTreeNode> children;
public CommonTreeNode(char val){
this.val = val;
children = new LinkedList<>();
}
public void addChildren(CommonTreeNode... children){
for(CommonTreeNode child:children)
this.children.add(child);
}
}
// 3.1所述的解法
public static CommonTreeNode getLastParent1(CommonTreeNode root,CommonTreeNode node1,CommonTreeNode node2){
if(root==null || node1==null || node2==null || !isInSubTree(root,node1,node2))
return null;
CommonTreeNode curNode = root;
while (true){
for(CommonTreeNode child:curNode.children){
if(isInSubTree(child,node1,node2)){
curNode = child;
break;
}
if(child==curNode.children.get(curNode.children.size()-1))
return curNode;
}
}
}
public static boolean isInSubTree(CommonTreeNode root,CommonTreeNode node1,CommonTreeNode node2){
Queue<CommonTreeNode> queue = new LinkedList<>();
CommonTreeNode temp = null;
int count = 0;
queue.add(root);
while (count!=2 && !queue.isEmpty()){
temp = queue.poll();
if(temp==node1||temp==node2)
count++;
if(!temp.children.isEmpty())
queue.addAll(temp.children);
}
if(count==2)
return true;
return false;
}
// 3.2所述的解法
public static CommonTreeNode getLastParent2(CommonTreeNode root,CommonTreeNode node1,CommonTreeNode node2){
List<CommonTreeNode> path1 = new ArrayList<>();
List<CommonTreeNode> path2 = new ArrayList<>();
getPath(root,node1,path1);
getPath(root,node2,path2);
CommonTreeNode lastParent = null;
for(int i=0;i<path1.size()&&i<path2.size();i++){
if(path1.get(i)==path2.get(i))
lastParent = path1.get(i);
else
break;
}
return lastParent;
}
public static boolean getPath(CommonTreeNode root,CommonTreeNode node,List<CommonTreeNode> curPath){
if(root==node)
return true;
curPath.add(root);
for(CommonTreeNode child:root.children){
if(getPath(child,node,curPath))
return true;
}
curPath.remove(curPath.size()-1);
return false;
}
public static void main(String[] args){
CommonTreeNode root = new CommonTreeNode('A');
CommonTreeNode b = new CommonTreeNode('B');
CommonTreeNode c = new CommonTreeNode('C');
CommonTreeNode d = new CommonTreeNode('D');
CommonTreeNode e = new CommonTreeNode('E');
CommonTreeNode f = new CommonTreeNode('F');
CommonTreeNode g = new CommonTreeNode('G');
CommonTreeNode h = new CommonTreeNode('H');
CommonTreeNode i = new CommonTreeNode('I');
CommonTreeNode j = new CommonTreeNode('J');
root.addChildren(b,c);
b.addChildren(d,e);
d.addChildren(f,g);
e.addChildren(h,i,j);
System.out.println(getLastParent1(root,f,h).val);
System.out.println(getLastParent2(root,f,h).val);
System.out.println(getLastParent1(root,h,i).val);
System.out.println(getLastParent2(root,h,i).val);
}
}
运行结果
B
B
E
E
链接:https://www.jianshu.com/p/edffe43abc14