洛书的递变的无聊探究

洛书的递变的无聊探究
洛书[1],又名河图洛书[2],按照百度百科说,很是神秘。
咱啥也不知道,咱也不敢问,但是,咱是个无聊好事分子,咱探究下洛书九宫格的“递变”,因为据说,有人被“惊诧”了。

九宫格
如图,
在这里插入图片描述

这是记载中的模式,其要求1-9填充九宫格,横、竖、斜和相等。
很容易得出如下性质,
. 横、竖、斜的和为(1 + 2 + … + 9) / 3 = 15,这点和递变相关
. 正中间必须是5
. 经过中心的横、竖、斜的两端和为10,这貌似是废话,但这个性质是递变的关键
. 4个角必须是偶数

递变
根据百度百科描述,对面两横或两竖满足如下递变规律,
一次递变,以横为例,
4 + 9 + 2 = 8 + 1 + 6
49 + 92 + 24 = 81 + 16 + 68
492 + 924 + 249 = 816 + 168 + 681
依此类推可以任意位。
平方递变
4^2 + 9^2 + 2^2 = 8^2 + 1^2 + 6^2
49^2 + 92^2 + 24^2 = 81^2 + 16^2 + 68^2
492^2 + 924^2 + 249^2 = 816^2 + 168^2 + 618^2
依此类推可以任意位。

哇噻,确实很神奇哦,这是肿么肥似呢。作为无聊好事分子,咱们看看到底是啥情况。

看看啥情况
仍然以横为例,
在这里插入图片描述

根据性质3
其中,a + b + c = 15

为了简化下操作,咱们借助下向量操作,纯粹是懒人偷懒,为了简化操作,跟向量其实关系不大。
设,D n= (10^(n-1), 10^(n-2), …, 1),decimal的计数扩展写法。那么,任意位整数m = a(n-1)a(n-2)…a1a0(书写方便,不是乘法),可以表示成,
m = Dn ∙ (a(n-1), a(n-2), …, a1, a0),∙ 为向量点积运算。

设,A = (a(n-1), a(n-2), …, a1, a0)
sum(A) = a(n-1) + a(n-2) + … + a0,就是向量各维求和(主要麻烦是Σ符号不好输入)
sum(A) = A ∙ (1, 1, …, 1),也可以这样表示。
那么,
sum(Dn) = 10^(n-1) + 10^(n-2) + … + 1 = (10^n - 1) / (10 - 1) = (10^n - 1) / 9
直白点,就是1,11,111,1111,…

下面来操作递变,设,
An = (a, b, c, a, b, c, …),就是从a开始的n位的循环,结尾数到谁就是谁,不用纠结。
Bn = (b, c, a, b, c, a, …),就是从b开始的n位的循环
Cn = (c, a, b, c, a, b, …),就是从c开始的n位的循环
T n = (10, 10, 10, …),n个憨憨10
借助向量点积表示

一次n位递变为
上横,
An∙Dn + Bn∙Dn + Cn∙Dn = (An+ Bn+Cn) ∙ Dn = (a + b +c, b + c + d, … ) ∙ Dn
= (15, 15, …, 15) ∙ Dn
= 15 * sum(Dn)
= 15 * 1…1,n个1
下横,根据性质3
(Tn - Cn) ∙ Dn + (Tn – Bn) ∙ Dn +(Tn - An) ∙ Dn
= (3*Tn - (An + Bn + Cn)) ∙ Dn
= (30 - 15, 30 - 15, …) ∙ Dn
= 15 * sum(Dn)
= 15 * 1…1,n个1
哇噻,确实很神奇哦

平方n位递变
上横
(An∙Dn)^2 + (Bn∙Dn)^2 + (Cn∙Dn)^2
下横,根据性质3
((Tn - Cn) ∙ Dn)^2 + ((Tn - Bn) ∙ Dn)^2 + ((Tn - An) ∙ Dn)^2
= (Tn∙Dn - Cn∙Dn)^2 + (Tn∙Dn - Cn∙Dn)^2 + (Tn∙Dn - Cn∙Dn)^2
= (Tn∙Dn)^2 - 2*(Tn∙Dn)*(Cn∙Dn) +(Cn∙Dn)^2

  • (Tn∙Dn)^2 - 2*(Tn∙Dn)*(Bn∙Dn) +(Bn∙Dn)^2
  • (Tn∙Dn)^2 - 2*(Tn∙Dn)(An∙Dn) +(An∙Dn)^2
    = 3
    (Tn∙Dn)*((Tn∙Dn)
  • 2*(Tn∙Dn)(Cn∙Dn + Bn∙Dn + An∙Dn)
    +(Cn∙Dn)^2 + (Bn∙Dn)^2 + (An∙Dn)^2
    = 3 * 10sum(Dn) * 10sum(Dn)
  • 2 * 10sum(Dn) * 15sum(Dn)
  • (Cn∙Dn)^2 + (Bn∙Dn)^2 + (An∙Dn)^2
    = (An∙Dn)^2 + (Bn∙Dn)^2 + (Cn∙Dn)^2
    上横平方n位递变 = 下横平方n位递变。
    哇噻,确实很神奇哦。

平方n位递变的计算

以上面横为例,
1, 2, 3位时,
(A1∙D1)^2 + (B1∙D1)^2 + (C1∙D1)^2
= a^2 + b^2 + c^2
= 4^2 + 9^2 + 2^2
= 101
(A2∙D2)^2 + (B2∙D2)^2 + (C2∙D2)^2
= 49^2 +92^2 +24^2
= 11,441
(A3∙D3)^2 + (B3∙D3)^2 + (C3∙D3)^2
=492^2 + 924^2 + 249^2
=1,157,841

位数>3时,设位数为3n + i,其中n = 1, 2, 3, ….,i = 1, 2, 3
设Tn = 1000^(n-1) + 1000^(n-2) + … + 1,直白点就是,1,1001,1001001,…
可以偷懒写成,
A(3n+i) ∙D(3n+i) = (A3∙D3)Kn10^i + Ai∙Di
B(3n+i) ∙D(3n+i) = (B3∙D3)Kn10^i + Bi∙Di
C(3n+i) ∙D(3n+i) = (C3∙D3)Kn10^i + Ci∙Di
各自求平方,
(A3∙D3)^2 * (Kn10i)2 +2(A3∙D3)(Kn10^i)( Ai∙Di) +(Ai∙Di)^2
(B3∙D3)^2 * (Kn
10i)2 +2*(B3∙D3)(Kn10^i )( Bi∙Di) +(Bi∙Di)^2
(C3∙D3)^2 * (Kn
10i)2 +2*(C3∙D3)(Kn10^i )( Ci∙Di) +( Ci∙Di)^2
求和,
=((A3∙D3)^2 + (B3∙D3)^2 + (C3∙D3)^2) * (Kn
10i)2
+2*((A3∙D3)( Ai∙Di)+ (B3∙D3)( Bi∙Di)+ (C3∙D3)( Ci∙Di))(Kn*10^i )

  • (Ai∙Di)^2 + (Bi∙Di)^2 + (Ci∙Di)^2
    可以看到,计算过前3项以后,在略微计算下第二项的部分,剩下只跟Kn和i有关了,也是非常规律的,这就是为什么上面只计算前3位的原因,具体就不计算了。

到这里,嗯嗯,确实有点意思,好玩。
关于洛图递进,就告以段落了。

后话
抽象化确实是个好东西,抛开繁杂,直奔本质,懒人必备技能
怀着一个8G的心探究生活,还是很有乐趣的
如果只把“∙”点积看作运算符号(实事上它就只是个运算符号),递变这事,初中娃应该能搞明白
如果把上述递变看作一种映射,该映射利用到了性质1、3,以及循环对称性,并且,该映射保持了循环对称性。这么以来,实在更无聊的话,也可以根据上面的性质,设计出其它好玩的映射,成为藏在洛书中的秘密。

参考
[1] 洛书,https://baike.baidu.com/item/%E6%B4%9B%E4%B9%A6/1737?fr=aladdin
[2] 河图洛书,https://baike.baidu.com/item/%E6%B2%B3%E5%9B%BE%E6%B4%9B%E4%B9%A6/1410
[3] 点积,https://baike.baidu.com/item/%E7%82%B9%E7%A7%AF/9648528?fr=aladdin#3

附录
根据计算公式的程序
def luoshu_f(n, i):
def kni(n, i):
r = 1
for j in range(n - 1):
r = r*1000 + 1
for j in range(i):
r = r * 10
return r

a = [1, 4, 49, 492]
b = [1, 9, 92, 924]
c = [1, 2, 24, 249]

r = [1, 101, 11441, 1157841]

return r[3]*(kni(n, i))**2 + 2*kni(n, i)*(a[3]*a[i] + b[3]*b[i] + c[3]*c[i]) + r[i]

根据计算公式程序计算的部分结果(这个实在太无聊了,属于纯粹凑字数呢)
101
11441
1157841

115999841
11601439841
1160157839841

116015999839841
11601601439839841
1160160157839839841

116016015999839839841
11601601601439839839841
1160160160157839839839841

116016016015999839839839841
11601601601601439839839839841
1160160160160157839839839839841

116016016016015999839839839839841
11601601601601601439839839839839841
1160160160160160157839839839839839841

116016016016016015999839839839839839841
11601601601601601601439839839839839839841
1160160160160160160157839839839839839839841

116016016016016016015999839839839839839839841
11601601601601601601601439839839839839839839841
1160160160160160160160157839839839839839839839841

116016016016016016016015999839839839839839839839841
11601601601601601601601601439839839839839839839839841
1160160160160160160160160157839839839839839839839839841

116016016016016016016016015999839839839839839839839839841
11601601601601601601601601601439839839839839839839839839841
1160160160160160160160160160157839839839839839839839839839841

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值