采集摄像头图像

采集摄像头图像,并使用支持向量机识别手写数字123,并分别输出三个数字的范围和坐标,可以使用Python中的OpenCV和sklearn库。以下是一个简单的示例代码: ```python import cv2 from sklearn import datasets, svm import numpy as np # 创建SVM分类器 classifier = svm.SVC(gamma=0.001) # 加载手写数字数据集 digits = datasets.load_digits() # 训练模型 classifier.fit(digits.data, digits.target) # 开启摄像头 cap = cv2.VideoCapture(0) while(True): # 读取摄像头图像 ret, frame = cap.read() # 将图像转为灰度图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 进行预处理,例如二值化、去噪等 # ... # 检测手写数字区域,并获取数字图像 # ... # 将数字图像转为8x8的图像,并预测数字 digit_img = cv2.resize(digit_img, (8, 8)) digit_img = digit_img / 16.0 digit_img = digit_img.reshape(1, -1) digit_pred = classifier.predict(digit_img) # 判断数字,并输出范围和坐标 if digit_pred == 1: # 输出数字1的范围和坐标 # ... elif digit_pred == 2: # 输出数字2的范围和坐标 # ... elif digit_pred == 3: # 输出数字3的范围和坐标 # ... # 显示摄像头图像和数字识别结果 cv2.imshow('frame', frame) cv2.imshow('digit', digit_img) if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头和窗口资源 cap.release() cv2.destroyAllWindows() ``` 在这个代码中,我们首先创建SVM分类器,并使用digits数据集来训练模型。然后,我们开启摄像头,并读取摄像头图像。接下来,我们进行预处理,例如二值化、去噪等。然后,我们检测手写数字区域,并获取数字图像。我们将数字图像转为8x8的图像,并预测数字。最后,我们根据数字的预测结果判断数字,并输出范围和坐标。在代码的最后,我们展示摄像头图像和数字识别结果,并等待按下“q”键来退出程序。 请注意,这个示例代码只是一个简单的演示,你可以根据自己的需求进行更改和调整。需要注意的是,在实际应用中,数字的预处理和检测手写数字区域可能需要一些高级的算法和技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值