答:
1. 代码整体结构
该代码实现了一个图的遍历算法,主要是通过DFS(深度优先搜索)来处理图的节点和边。核心功能包括:
dfs(int x):用于深度优先搜索,从节点x开始遍历,更新节点之间的最短路径信息。solve(int x):这个函数的功能是计算并记录从节点x出发到其他节点的路径权重和路径信息。main():程序的主函数,负责处理输入并调用上述函数完成计算。
2. 代码的细节解释
2.1 dfs(int x)函数
inline void dfs(int x) {
for (auto y : edges[x]) {
if (y != pre[x]) {
pre[y] = x;
dist[y] = dist[x] + 1;
dfs(y);
}
}
}
- 功能:从节点
x开始进行深度优先搜索,遍历所有连接到x的节点y。pre数组用来记录当前节点的前驱节点,dist数组用来记录从起点到当前节点的距离。 - 作用:用于更新每个节点的前驱和距离信息,这在路径计算和判断中很重要。
2.2 solve(int x)函数
inline void solve(int x) {
s[x] = 1;
for (auto y : edges[x]) {
if (y != pre[x]) {
solve(y);
s[x] += s[y];
}
}
}
- 功能:递归地计算每个子树的节点个数。
s[x]表示以x为根的子树的节点数量。 - 作用:为后续的计算提供子树的节点信息,这在树形图结构中很常见,用于平衡或者其他计算。
2.3 main()函数
int main() {
scanf("%d", &n);
for (int i = 1; i < n; i++) {
int x, y;
scanf("%d%d", &x, &y);
edges[x].push_back(y);
edges[y].push_back(x);
}
memset(pre, 0, sizeof(pre));
pre[1] = -1;
solve(1);
int idx = 0, v = 1 << 30;
for (int i = 1; i <= n; i++) {
int f = 0;
for (auto y : edges[i]) {
if (y != pre[i]) {
f = max(f, s[y]);
} else {
f = max(f, n - s[i]);
}
}
if (f < v) {
v = f;
idx = i;
}
}
memset(pre, 0, sizeof(pre));
memset(dist, 0, sizeof(dist));
pre[idx] = -1;
dfs(idx);
long long ans = 0;
for (int i = 1; i <= n; i++) {
ans += dist[i];
}
cout << ans;
}
- 输入处理:首先从输入中读取节点数
n,然后读取图的边,构造邻接表edges。 - 遍历与求解:
- 调用
solve(1)计算以1为根的子树节点数量。 - 通过遍历所有节点,找到“中心节点”(使得最大子树的节点数最小的节点),并记录下标
idx。
- 结果计算:找到“中心节点”后,以该节点为根再次进行DFS遍历,计算所有节点到中心节点的距离总和,并输出结果。
3. 总结
这个程序的主要功能是计算一个图中各节点到某个“中心节点”的最短路径和,并找到最优的“中心节点”以最小化路径和。这种类型的问题在树形结构的优化中非常常见。代码使用了深度优先搜索来遍历图并计算路径,较为常见且高效。