boydoy1987
码龄15年
关注
提问 私信
  • 博客:51,325
    问答:5,590
    56,915
    总访问量
  • 49
    原创
  • 41,477
    排名
  • 630
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:在代码的世界里,我是一位寻梦的旅人,用指尖编织着未来。现在,我决定将这份热情化为文字,与你分享编程的奥秘,共度每一个晨昏。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2010-02-12
博客简介:

boydoy1987的专栏

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    382
    当月
    27
个人成就
  • 获得821次点赞
  • 内容获得2次评论
  • 获得665次收藏
  • 代码片获得1,240次分享
创作历程
  • 49篇
    2024年
成就勋章
TA的专栏
  • 杂谈
    4篇
  • 技术破茧
    18篇
  • JVM探秘
  • 前端破晓
    9篇
  • 运维部署
    8篇
  • 开发工具
    6篇
兴趣领域 设置
  • 大数据
    mysqlredis
  • 后端
    spring架构
  • 微软技术
    c#.netasp.net
  • 搜索
    elasticsearch
  • 服务器
    linux
创作活动更多

HarmonyOS开发者社区有奖征文来啦!

用文字记录下您与HarmonyOS的故事。参与活动,还有机会赢奖,快来加入我们吧!

0人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

如何解决前端开发中 `node-sass` 与 Node.js 版本不兼容的问题

在项目开发过程中,版本不兼容问题是经常会遇到的。通过升级依赖、替代工具或使用版本管理工具,可以有效地避免这些问题。在日常开发中,保持依赖包的更新以及熟悉项目所需的环境是非常重要的。
原创
发布博客 2024.09.04 ·
987 阅读 ·
11 点赞 ·
0 评论 ·
7 收藏

MySQL 千万级数据查询优化实战

MySQL 的查询优化是一项复杂且持续的任务,特别是在面对千万级数据时。通过合理使用索引、优化 SQL 语句、进行表设计、利用缓存机制以及调整数据库参数,你可以大幅提升查询性能。结合以上策略,逐步优化你的数据库查询,使其在大数据量下依然能够保持高效运行。
原创
发布博客 2024.09.03 ·
1011 阅读 ·
13 点赞 ·
0 评论 ·
13 收藏

MySQL 锁机制详解

MySQL 提供了丰富的锁机制来应对并发操作问题,不同类型的锁适用于不同的场景。在 Java 应用中,合理使用锁和事务管理可以有效避免数据冲突和不一致问题。希望本文的介绍和示例能帮助你更好地理解和应用 MySQL 的锁机制。
原创
发布博客 2024.09.03 ·
638 阅读 ·
6 点赞 ·
0 评论 ·
5 收藏

深入解析MySQL InnoDB索引数据结构

在数据库系统中,索引是提高查询效率的关键技术。MySQL InnoDB存储引擎采用了一种高效的数据结构——B+树,来管理和维护索引。本文将深入剖析InnoDB索引的数据结构,并分享一些实用的优化技巧。聚集索引(Clustered Index)二级索引(Secondary Index)全文索引(Full-Text Index)本文主要讨论聚集索引和二级索引的数据结构。本文介绍了MySQL InnoDB存储引擎的索引数据结构,并通过代码示例展示了B+树索引的构建过程。
原创
发布博客 2024.08.20 ·
579 阅读 ·
10 点赞 ·
0 评论 ·
3 收藏

MySQL数据存储引擎:InnoDB与MyISAM的优缺点及常见业务场景

通过合理选择数据存储引擎,可以更好地满足应用的需求,提高系统的性能和稳定性。本文将深入探讨MySQL中的InnoDB和MyISAM两种主流存储引擎的优缺点、常见使用业务场景,并详细讲解它们的锁机制和表压缩原理。MyISAM的表压缩是指将数据存储在压缩表文件中,以节省磁盘空间。在压缩表中,数据行以压缩的形式存储,索引项中的指针指向压缩后的数据行。当查询数据时,MyISAM会先根据索引找到数据行的位置,然后解压缩数据行以供查询。MyISAM是MySQL中最古老的存储引擎之一,它支持表压缩和全文索引。
原创
发布博客 2024.08.20 ·
564 阅读 ·
8 点赞 ·
0 评论 ·
7 收藏

本资源为vue手写撒花效果,纯手写

发布资源 2024.08.20 ·
vue

SkyWalking 安装与使用教程

SkyWalking 是一款开源的分布式应用性能监控(APM)系统,用于监控微服务、云原生应用、容器等。它支持服务跟踪、性能监控、日志分析和数据可视化。SkyWalking 提供了强大的性能监控能力,通过全链路追踪帮助开发者和运维人员诊断应用问题。本教程详细介绍了如何安装和配置 SkyWalking,包括单机模式和分布式模式的设置,以及如何集成 SkyWalking Agent 以进行应用性能监控。SkyWalking 是一个功能强大的 APM 工具,可以帮助你深入了解和优化应用程序的性能。
原创
发布博客 2024.08.19 ·
1027 阅读 ·
28 点赞 ·
0 评论 ·
23 收藏

ELK Stack 安装与配置教程

ELK Stack 是由 Elasticsearch、Logstash 和 Kibana 组成的一套开源日志处理和分析平台。它用于收集、处理和可视化日志数据,是进行日志管理、数据分析和可视化的重要工具。
原创
发布博客 2024.08.19 ·
1843 阅读 ·
35 点赞 ·
0 评论 ·
45 收藏

MySQL 安装与配置教程:单机、主从复制与集群模式

MySQL 是一个广泛使用的关系型数据库管理系统,具有高性能、高可靠性和易用性等特点。它支持多种部署模式,包括单机模式、主从复制模式(用于高可用性和读写分离)以及集群模式(用于分布式部署和高扩展性)
原创
发布博客 2024.08.18 ·
2685 阅读 ·
60 点赞 ·
1 评论 ·
71 收藏

MinIO 安装与配置教程

MinIO 是一款高性能的对象存储系统,兼容 Amazon S3 API,能够在私有云、公有云、混合云和边缘环境中部署。MinIO 的设计目标是高性能、可扩展和简单易用,适用于大规模数据存储、云原生应用和数据湖等场景。本教程详细介绍了 MinIO 的安装与配置过程,包括单机模式和分布式模式的设置。MinIO 是一个强大的对象存储系统,通过简单易用的接口和工具,能够满足各种规模的数据存储需求。希望本教程能帮助你快速上手 MinIO,并在实际项目中应用。如果有任何问题或需要进一步的说明,欢迎提出!
原创
发布博客 2024.08.18 ·
1383 阅读 ·
27 点赞 ·
0 评论 ·
20 收藏

Redis 安装与配置教程:单机、哨兵模式与集群模式

Redis 是一个开源的键值对存储系统,支持丰富的数据结构,如字符串、哈希、列表、集合等。它被广泛用于缓存、会话存储、实时分析等场景。Redis 提供了多种部署模式,包括单机模式、哨兵模式(用于高可用性)和集群模式(用于水平扩展)
原创
发布博客 2024.08.17 ·
1430 阅读 ·
51 点赞 ·
0 评论 ·
23 收藏

Elasticsearch 在 Java 中的使用教程

Elasticsearch 是一个分布式搜索和分析引擎,基于 Apache Lucene 构建,能够实现实时数据的存储、搜索、和分析。它广泛应用于全文搜索、日志分析、性能监控等领域。Elasticsearch 的核心概念包括文档(document)、索引(index)、和分片(shard)
原创
发布博客 2024.08.17 ·
2624 阅读 ·
19 点赞 ·
0 评论 ·
29 收藏

Jxls使用初体验

Jxls是一个Java库,用于在Java应用程序中生成Excel报告。它允许开发者在不依赖Excel文件模板的情况下,直接在Java代码中创建Excel文件。Jxls的主要特点是简单易用,支持大数据量处理,并且提供了丰富的API来定制Excel报告的样式和格式。
原创
发布博客 2024.08.16 ·
576 阅读 ·
9 点赞 ·
0 评论 ·
4 收藏

MongoDB 在 Java 中的使用教程

MongoDB 是一个基于分布式文件存储的 NoSQL 数据库系统。它以文档(JSON 形式)存储数据,具有高扩展性和灵活的数据模型,非常适合处理海量数据和高并发的场景。相对于传统的关系型数据库,MongoDB 的特点是无需预定义数据结构,支持灵活的文档结构。
原创
发布博客 2024.08.16 ·
1904 阅读 ·
38 点赞 ·
0 评论 ·
30 收藏

双亲委派机制详解及代码示例

双亲委派模型要求除了顶层的启动类加载器(Bootstrap ClassLoader)外,其余的类加载器都应当有自己的父类加载器。类加载器在尝试自己加载类之前,首先委托给父类加载器进行加载,只有当父类加载器无法加载该类时,才由自己来加载。@Overridetry {} else {// 读取类的二进制数据// 这里仅为示例,实际中需要从文件系统、网络或其他来源读取int b;在上面的示例中,我们创建了一个自定义类加载器。
原创
发布博客 2024.08.15 ·
1056 阅读 ·
31 点赞 ·
0 评论 ·
10 收藏

Spring IoC容器源码深度解析

IoC(Inversion of Control)是Spring框架的基础,它负责管理对象的创建、配置和生命周期。Spring的IoC容器主要由和接口定义。
原创
发布博客 2024.08.15 ·
724 阅读 ·
11 点赞 ·
0 评论 ·
10 收藏

前端在浏览器端如何使用浏览器数据库

IndexedDB 是一种低级的浏览器数据库 API,用于存储大量结构化数据。它是一个异步的、事务型的、键值对存储的数据库。IndexedDB 适用于需要大量数据存储和复杂查询的应用。浏览器提供了多种存储技术来满足不同的需求。IndexedDB 适用于需要大量数据存储和复杂操作的场景,而 Web Storage(和)则适用于较小的数据存储需求。通过正确使用这些技术,可以有效地管理客户端数据,提升应用的用户体验。希望这篇教程能帮助你更好地理解和使用浏览器数据库技术。
原创
发布博客 2024.08.14 ·
465 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

使用 `@JsonTypeInfo` 和 `@JsonSubTypes` 注解实现多态序列化

在Java的序列化和反序列化过程中,通常会遇到一些多态类型的场景。在这些情况下,必须能够正确地将对象的实际类型信息包括在JSON中,以便在反序列化时能够正确地还原对象。和注解正是为了解决这个问题而设计的。和注解为Java应用程序提供了处理多态类型序列化和反序列化的强大工具。在需要处理多种类型的场景中,这两个注解可以确保对象在JSON中的类型信息完整和正确,为系统的扩展性和维护性提供了保障。
原创
发布博客 2024.08.14 ·
988 阅读 ·
9 点赞 ·
0 评论 ·
7 收藏

两张图一个程序哦,别搞错

答:

1. 代码整体结构

该代码实现了一个图的遍历算法,主要是通过DFS(深度优先搜索)来处理图的节点和边。核心功能包括:

  • dfs(int x):用于深度优先搜索,从节点x开始遍历,更新节点之间的最短路径信息。
  • solve(int x):这个函数的功能是计算并记录从节点x出发到其他节点的路径权重和路径信息。
  • main():程序的主函数,负责处理输入并调用上述函数完成计算。

2. 代码的细节解释

2.1 dfs(int x)函数

inline void dfs(int x) {
    for (auto y : edges[x]) {
        if (y != pre[x]) {
            pre[y] = x;
            dist[y] = dist[x] + 1;
            dfs(y);
        }
    }
}
  • 功能:从节点x开始进行深度优先搜索,遍历所有连接到x的节点y。pre数组用来记录当前节点的前驱节点,dist数组用来记录从起点到当前节点的距离。
  • 作用:用于更新每个节点的前驱和距离信息,这在路径计算和判断中很重要。

2.2 solve(int x)函数

inline void solve(int x) {
    s[x] = 1;
    for (auto y : edges[x]) {
        if (y != pre[x]) {
            solve(y);
            s[x] += s[y];
        }
    }
}
  • 功能:递归地计算每个子树的节点个数。s[x]表示以x为根的子树的节点数量。
  • 作用:为后续的计算提供子树的节点信息,这在树形图结构中很常见,用于平衡或者其他计算。

2.3 main()函数

int main() {
    scanf("%d", &n);
    for (int i = 1; i < n; i++) {
        int x, y;
        scanf("%d%d", &x, &y);
        edges[x].push_back(y);
        edges[y].push_back(x);
    }

    memset(pre, 0, sizeof(pre));
    pre[1] = -1;
    solve(1);

    int idx = 0, v = 1 << 30;
    for (int i = 1; i <= n; i++) {
        int f = 0;
        for (auto y : edges[i]) {
            if (y != pre[i]) {
                f = max(f, s[y]);
            } else {
                f = max(f, n - s[i]);
            }
        }
        if (f < v) {
            v = f;
            idx = i;
        }
    }

    memset(pre, 0, sizeof(pre));
    memset(dist, 0, sizeof(dist));
    pre[idx] = -1;
    dfs(idx);

    long long ans = 0;
    for (int i = 1; i <= n; i++) {
        ans += dist[i];
    }
    cout << ans;
}
  • 输入处理:首先从输入中读取节点数n,然后读取图的边,构造邻接表edges。
  • 遍历与求解:
    • 调用solve(1)计算以1为根的子树节点数量。
    • 通过遍历所有节点,找到“中心节点”(使得最大子树的节点数最小的节点),并记录下标idx。
  • 结果计算:找到“中心节点”后,以该节点为根再次进行DFS遍历,计算所有节点到中心节点的距离总和,并输出结果。

3. 总结

这个程序的主要功能是计算一个图中各节点到某个“中心节点”的最短路径和,并找到最优的“中心节点”以最小化路径和。这种类型的问题在树形结构的优化中非常常见。代码使用了深度优先搜索来遍历图并计算路径,较为常见且高效。

回答问题 2024.08.13

如何解决7z解压CRC错误及其他7-Zip常见问题

7-Zip是一款开源且功能强大的压缩软件,广泛用于文件的压缩与解压缩。然而,在使用过程中,用户可能会遇到一些常见错误,比如CRC错误。本文将探讨7z文件解压时常见的CRC错误及其他7-Zip常见问题的解决方案,帮助您快速排除故障,顺利解压文件。CRC(Cyclic Redundancy Check,循环冗余校验)错误是一种数据校验错误,通常在文件传输或存储时出现。当文件的校验值与预期不符时,7-Zip会报告CRC错误。这意味着文件可能在压缩、传输或存储过程中损坏。
原创
发布博客 2024.08.13 ·
4567 阅读 ·
10 点赞 ·
0 评论 ·
17 收藏
加载更多