Pandas:按索引合并数据集

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/bqw18744018044/article/details/79948493
import numpy as np
import pandas as pd
from pandas import Series,DataFrame

一、merge函数

left1 = DataFrame({'水果':['苹果','梨','草莓'],
                  '价格':[3,4,5],
                  '数量':[9,8,7]}).set_index('水果')
right1 = DataFrame({'水果':['苹果','草莓'],
                   '产地':['美国','中国']})
print(left1)
print(right1)
    价格  数量
水果        
苹果   3   9
梨    4   8
草莓   5   7
   产地  水果
0  美国  苹果
1  中国  草莓
print(pd.merge(left1,right1,right_on='水果',left_index=True,how='outer'))
   价格  数量   产地  水果
0   3   9   美国  苹果
1   4   8  NaN   梨
1   5   7   中国  草莓

二、DataFrame的join函数

left2 = left1
right2 = right1.set_index('水果')

1.join函数默认将两个DataFrame的index进行合并

print(left2.join(right2))
    价格  数量   产地
水果             
苹果   3   9   美国
梨    4   8  NaN
草莓   5   7   中国

2.若其中一个DataFrame合并的键不在索引上,可使用on参数

print(right1.join(left1,on='水果',how='outer'))
    产地  水果  价格  数量
0   美国  苹果   3   9
1   中国  草莓   5   7
1  NaN   梨   4   8

3.多个DataFrame按索引合并

another = DataFrame({'水果':['苹果','香蕉','梨'],
                    '品质':['AA','AAAA','A']}).set_index('水果')
print(left2.join([right2,another],how='outer'))
     价格   数量   产地    品质
梨   4.0  8.0  NaN     A
苹果  3.0  9.0   美国    AA
草莓  5.0  7.0   中国   NaN
香蕉  NaN  NaN  NaN  AAAA
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页