Pandas:连接数据集--concat

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

一、Numpy数组的连接–concatenate

a = np.arange(6).reshape(2,3)
a
array([[0, 1, 2],
       [3, 4, 5]])

1.垂直连接

np.concatenate([a,a])
array([[0, 1, 2],
       [3, 4, 5],
       [0, 1, 2],
       [3, 4, 5]])

2.水平连接

np.concatenate([a,a],axis=1)
array([[0, 1, 2, 0, 1, 2],
       [3, 4, 5, 3, 4, 5]])

二、pandas.concat函数

s1 = Series([0,1],index = ['a','b'])
s2 = Series([2,3,4],index = ['c','d','e'])
s3 = Series([5,6],index = ['f','g'])

1.垂直连接

pd.concat([s1,s2,s3])
a    0
b    1
c    2
d    3
e    4
f    5
g    6
dtype: int64

2.水平连接

print(pd.concat([s1,s2,s3],axis=1))
     0    1    2
a  0.0  NaN  NaN
b  1.0  NaN  NaN
c  NaN  2.0  NaN
d  NaN  3.0  NaN
e  NaN  4.0  NaN
f  NaN  NaN  5.0
g  NaN  NaN  6.0

3.对连接的对象添加索引(实现层次索引)

print(pd.concat([s1,s2,s3],keys=['one','two','thress']))
one     a    0
        b    1
two     c    2
        d    3
        e    4
thress  f    5
        g    6
dtype: int64

4.水平连接时,为结果的DataFrame添加列索引

print(pd.concat([s1,s2,s3],axis=1,keys=['one','two','three']))
   one  two  three
a  0.0  NaN    NaN
b  1.0  NaN    NaN
c  NaN  2.0    NaN
d  NaN  3.0    NaN
e  NaN  4.0    NaN
f  NaN  NaN    5.0
g  NaN  NaN    6.0

5.对DataFrame同样适用

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/bqw18744018044/article/details/79951931
个人分类: Pandas
上一篇Pandas:按索引合并数据集
下一篇Pandas:移除重复数据
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭