Pandas:重塑(stack)和轴向旋转(pivot)

标签: stack pivot unstack 重塑 轴向旋转
8人阅读 评论(0) 收藏 举报
分类:
import numpy as np
import pandas as pd
from pandas import Series,DataFrame

一、重塑

stack:将数据的列索引旋转为行索引

unstack:将数据的行索引旋转为列索引

df = DataFrame({'水果':['苹果','梨','草莓'],
               '数量':[3,4,5],
               '价格':[4,5,6]})
print(df)
   价格  数量  水果
0   4   3  苹果
1   5   4   梨
2   6   5  草莓

1.stack()

stack_df = df.stack()
print(stack_df)
0  价格     4
   数量     3
   水果    苹果
1  价格     5
   数量     4
   水果     梨
2  价格     6
   数量     5
   水果    草莓
dtype: object

2.unstack()

print(stack_df.unstack())
  价格 数量  水果
0  4  3  苹果
1  5  4   梨
2  6  5  草莓

3.通过level参数指定旋转轴的层次(默认level=-1)

print(stack_df.unstack(level=0))
     0  1   2
价格   4  5   6
数量   3  4   5
水果  苹果  梨  草莓

二、轴向旋转(pivot)

pivot(index,columns,values):将index指定为行索引,columns是列索引,values则是DataFrame中的值

df = DataFrame({'水果种类':['苹果','苹果','梨','梨','草莓','草莓'],
               '信息':['价格','数量','价格','数量','价格','数量'],
               '值':[4,3,5,4,6,5]})
print(df)
   信息  值 水果种类
0  价格  4   苹果
1  数量  3   苹果
2  价格  5    梨
3  数量  4    梨
4  价格  6   草莓
5  数量  5   草莓

将水果种类作为行索引,将信息作为列索引

print(df.pivot('水果种类','信息','值'))
信息    价格  数量
水果种类        
梨      5   4
苹果     4   3
草莓     6   5

pivot可以用set_index和unstack等价的实现

print(df.set_index(['水果种类','信息']).unstack())
      值   
信息   价格 数量
水果种类      
梨     5  4
苹果    4  3
草莓    6  5
查看评论

XML and Databases

XML and DatabasesCopyright 1999, 2000 by Ronald BourretSeptember, 1999 (Last updated November 2000)T...
  • ghj1976
  • ghj1976
  • 2001-05-25 13:48:00
  • 1700

pandas学习笔记3—数据重塑图解Pivot, Pivot-Table, Stack and Unstack

数据重塑图解—Pivot, Pivot-Table, Stack and Unstack引言Pandas是python中常用的数据分析软件库,它提供了DataFrames和Series的工具,这使得n...
  • liuweiyuxiang
  • liuweiyuxiang
  • 2017-10-12 22:12:27
  • 423

利用Python进行数据分析(13) pandas基础: 数据重塑/轴向旋转

重塑定义     重塑指的是将数据重新排列,也叫轴向旋转。 DataFrame提供了两个方法: stack: 将数据的列“旋转”为行。unstack:将数据的行“旋转”为列。...
  • IAlexanderI
  • IAlexanderI
  • 2017-11-23 16:00:59
  • 199

Pandas透视表(pivot_table)详解

介绍 也许大多数人都有在Excel中使用数据透视表的经历,其实Pandas也提供了一个类似的功能,名为pivot_table。虽然pivot_table非常有用,但是我发现为了格式化输出我所需要...
  • chencheng126
  • chencheng126
  • 2015-11-30 21:37:23
  • 17264

python pandas库——pivot使用心得

最近在做基于python的数据分析工作,引用第三方数据分析库——pandas。 在做数据统计二维表转换的时候走了不少弯路,发现pivot()这个方法可以解决很多问题,让我少走一些弯路,节省了大量的代...
  • qq_29118049
  • qq_29118049
  • 2017-12-14 17:07:06
  • 170

pandas 下的重塑数据函数pivot-(转)

在CSV文件当中或者数据库当的数据通常以长格式或者(stacked)堆叠格式存储,特别是金融数据中出现的时间序列数据,例如: In [1]: df Out[1]: date va...
  • toyijiu
  • toyijiu
  • 2018-01-17 15:36:43
  • 126

pandas中groupby和pivot_table(数据透视表)

pivot_table(数据透视表)可以看做是一种高级的groupby功能,下面贴两段代码比较一下: df=pd.read_csv('2016_sale.csv') a=pd.pivot_ta...
  • hal_sakai
  • hal_sakai
  • 2016-12-16 15:31:33
  • 2624

python——pandas的pivot_table使用

提供给我的输入是几个文本,读取为dataframe格式之后如下(此处只列出两个文本的模拟内容) In[179]: t1 Out[178]:     id  value1  value2 0   ...
  • chenKFKevin
  • chenKFKevin
  • 2017-11-27 16:45:05
  • 1718

pandas pivot_table() 按日期分多列数据

pandas pivot_table() 按日期分多列数据,python
  • uvyoaa
  • uvyoaa
  • 2017-03-16 18:01:50
  • 966

深入探讨ROP 载荷分析

0x00 简介 Exploit-db上看到的感觉还不错,所以就翻译一下,原文题目为《Deep Dive into ROP Payload Analysis》,作者Sudeep Singh。 这...
  • omnispace
  • omnispace
  • 2016-03-29 14:39:29
  • 616
    个人资料
    持之以恒
    等级:
    访问量: 1939
    积分: 655
    排名: 7万+
    文章存档
    最新评论