有一颗二叉树,最大深度为D,且所有叶子的深度都相同。所有节点从上到下从左到右编号为1,2,3,4,5...2^D-1。在节点1处放一个小球,它会往下落。每个内节点上都有一个开关,初始全部关闭,当每次有小球落到一个开关上时,它的状态都会改变。当小球到达一个内节点时,如果该节点上的开关关闭,则往左走,否则往右走,直到走到叶子节点。一些小球从节点1处依次开始下落,最后一个小球将回落到哪里?输入叶子深度D和小球个数I,输出第I个小球最后所在的叶子编号。假设I不超过整棵树的叶子个数。D<=20。
分析:当I是奇数时,它是往左走的第(I+1)/2个小球;当I是偶数时,她是往右走的第I/2个小球。这样,可以直接模拟最后一个小球的路线:
如果I是奇数,它一定会落在左子树,否则,一定是在右子树。以I为3为例,可以将它看作是从节点2开始降落的第二个球,依此类推。
#include <iostream>
using namespace std;
void fun(int D, int I)
{
int k = 1;
for (int i = 0; i < D-1; i++)
{
if (I & 1)
{
k *= 2;
I = (I+1)/2;
}
else
{
k = k*2 + 1;
I /= 2;
}
}
cout << k << endl;
}
参考:《算法竞赛入门经典》(刘汝佳著)第6.3.1节