夹克老爷的愤怒
夹克老爷逢三抽一之后,由于采用了新师爷的策略,乡民们叫苦不堪,开始组织起来暴力抗租。
夹克老爷很愤怒,他决定派家丁常驻村中进行镇压。
诺德县 有N个村庄,编号0 至 N-1,这些村庄之间用N - 1条道路连接起来。家丁都是经过系统训练的暴力机器,每名家丁可以被派驻在一个村庄,并镇压当前村庄以及距离该村庄不超过K段道路的村庄。
夹克老爷一贯奉行最小成本最大利润的原则,请问要实现对全部村庄的武力控制,夹克老爷需要派出最少多少名家丁?
Input
第1行:2个数N, K中间用空格分隔(1<= N <= 100000, 0 <= K <= N)。 之后N-1行:每行2个数S, E中间用空格分隔,表示编号为S的村庄同编号为E的村庄之间有道路相连。(0 <= S, E < N)。
Output
输出一个数说明要实现对全部村庄的武力控制,夹克老爷需要派出最少多少名家丁?
Input示例
4 1 0 1 0 2 0 3
Output示例
1
#include <iostream> #include <algorithm> #include <cmath> #include <vector> #include <string> #include <cstring> #pragma warning(disable:4996) using namespace std; #define inf 0x3f3f3f3f const int MAXN = 1e5 + 50; int res; int n, k; int s, e; int used[MAXN]; int dp[MAXN]; vector<int>node[MAXN]; void dfs(int x) { used[x] = 1; int minn = inf; int maxn = -inf; int size = node[x].size(); int i; for (i = 0; i < size; i++) { int temp = node[x][i]; if (used[temp] == 0) { dfs(temp); minn = min(minn, dp[temp]); maxn = max(maxn, dp[temp]); } } if (minn == inf) { dp[x] = -1; } else if (minn <= -k) { res++; dp[x] = k; } else if (maxn + minn > 0) { dp[x] = maxn - 1; } else { dp[x] = minn - 1; } used[x] = 0; } int main() { int i; cin >> n >> k; for (i = 1; i <= n - 1; i++) { cin >> s >> e; s++; e++; node[s].push_back(e); node[e].push_back(s); } if (k == 0) { cout << n << endl; return 0; } dfs(1); if (dp[1] < 0) { res++; } cout << res << endl; return 0; }