【机器学习】史上最贴心最详细手把手教你Windows环境下安装XGBoost

本文详细介绍了在Windows系统下使用Anaconda安装XGBoost的过程。涉及安装所需的基础软件,如GitforWindows和MINGW,以及通过Git获取XGBoost源代码并编译的方法。
摘要由CSDN通过智能技术生成

Windows下安装python版的XGBoost(Anaconda)

感谢博主们的辛勤付出,泡泡糖nanaLeo_Xu06的精彩博文,让我受益匪浅。

XGBoost是近年来很受追捧的机器学习算法,由华盛顿大学的陈天奇提出,在国内外的很多大赛中取得很不错的名次,要具体了解该模型,可以移步官方文档,本文介绍其在Widows系统下基于Git的python版本的安装方法。

需要用到三个软件:
python软件(本文基于Anaconda下载,因为自带很多库,比较方便),这里推荐64位的,具体根据电脑配置安装
Git for Windows
安装文件如图:
这里写图片描述
MINGW
安装文件如图:
这里写图片描述
Anaconda的安装比较简单,基本没多少注意事项,假设都已经安装好了Anaconda,且安装的基于python3运行。

第二步安装Git,因为在安装过程中,会有运行指令的影响,选择Vim会有些默认的指令语言可以直接调用,具体可以参照下面的流程图:
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

这样intall就可以成功安装Git了。

第三步安装MINGW,将下载的MINGW直接运行,全部点击next就可以成功安装。
这里写图片描述

然后选择x86_64的Architecture,其他的选项默认。

这里写图片描述

这里写图片描述

同样Next就可以成功安装MINGW了。

最终我们就成功的集齐三大神兽,下面开始安装XGBoost;

提醒:带$符号的均是Git Bash里运行。

第一步
将MINGW的环境变量添加到自己的电脑,之前我们安装好MINGW有个bin的文件夹,拷贝文件夹的路径:C:\Program Files\mingw-w64\x86_64-7.2.0-posix-seh-rt_v5-rev0\mingw64\bin
这里写图片描述
接下来是添加环境变量,由于我的电脑是win10系统,所以跟百度的如何添加环境变量或路径添加到系统的Path里面有些许区别,上图:
按照箭头指引即可,最终会有椭圆形的路径出现,保存就是成功安装了
关闭Git Bash终端,再次打开,刚刚添加的路径变量就生效了。
下面用代码运行一下:
运行结果如图所示,就表明路径添加成功了

接着输入以下命令:

$ alias make='mingw32-make'

第二步安装XGBoost
我们先新建一个空的文件夹,用于存放从git下载的xgboost文件:
xgboostCode
让我们定位一下我们命名的空文件夹xgboostCode,感受以下git的用法:

$ cd /c/Users/xgboostCode/
#一定要路径是对的,根据你指定xgboostCode的位置,上面的命令报错找不到,下面就可以
$ cd /c/Users/BruceWong/xgboostCode/  

这里写图片描述

然后用下面的命令从GitHub下载XGBoost,一个一个输入就可以:

$ git clone --recursive https://github.com/dmlc/xgboost  
$ cd xgboost  
$ git submodule init  
$ git submodule update
$ cd dmlc-core  
$ make -j4  
$ cd ../rabit  
$ make lib/librabit_empty.a -j4  
$ cd ..  
$ cp make/mingw64.mk config.mk  
$ make -j4  

至于上述一些列命令什么意思,自己动手百度,这里不过分纠缠。

执行完成之后就可以在Anaconda中安装XGBoost的python模块了。在电脑的开始菜单中打开Anaconda Promptanaconda安装库就是在这个环境下进行安装的
这里写图片描述
输入下面命令:

cd xgboostCode\xgboost\python-package  

最后执行安装命令:

python setup.py install 

安装已经完成,但在调用XGBoost之前,还应该将g++的运行库路径导入到os环境路径变量中,在Anaconda中打开Ipython或者spider等等,或者在python的命令行里,分别输入下面的命令:

import os  
mingw_path = 'C:\\Program Files\\mingw-w64\\x86_64-5.3.0-posix-seh-rt_v4-rev0\\mingw64\\bin'  
os.environ['PATH'] = mingw_path + ';' + os.environ['PATH']  

下面新建一个python文件(注意:不能用xgboost的模块名命名,比如xgboost.py),导入XGBoost,并测试下面的代码:

import numpy as np  
import xgboost as xgb  
data = np.random.rand(5,10) # 5 entities, each contains 10 features  
label = np.random.randint(2, size=5) # binary target  
dtrain = xgb.DMatrix( data, label=label)  

dtest = dtrain  

param = {'bst:max_depth':2, 'bst:eta':1, 'silent':1, 'objective':'binary:logistic' }  
param['nthread'] = 4  
param['eval_metric'] = 'auc'  

evallist  = [(dtest,'eval'), (dtrain,'train')]  

num_round = 10  
bst = xgb.train( param, dtrain, num_round, evallist )  

bst.dump_model('dump.raw.txt')  

会输出以下结果:
这里写图片描述

哈哈哈,恭喜你安装成功,XGBoost随便嗨。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值