深度学习
brucewong0516
这个作者很懒,什么都没留下…
展开
-
【TensorFlow】激活函数(Activation Functions)原理解析(十二)
神经网络结构的输出为所有输入的加权和,这导致整个神经网络是一个线性模型。如果将每一个神经元的输出通过一个非线性函数,那么整个神经网络的模型也就不再是线性的了,使得神经网络可以更好地解决较为复杂的问题。这个非线性函数也就是**激活函数**。原创 2017-12-18 17:33:22 · 11747 阅读 · 0 评论 -
【Keras】MLP多层感知机
在进行神经网络模型的构建时,有优化模型训练速度的技巧,以下从两个方面进行分析。并在接下来实现MLP的模型中应用。1、优化梯度下降之前使用的梯度下降训练模型,优化模型的参数,但是每次更新梯度时需要把数据集中的每个样本都重新计算一边,在海量计算的深度学习中,这个计算量非常的大。因此引入随机梯度的思想,随机抽取一批数据进行计算(数据量参数是:batch_size),这样计算量会大大减少,但是原创 2017-12-09 21:17:55 · 3316 阅读 · 0 评论 -
【Keras】Keras学习框架
大部分深度学习都是以符号主义的方式使用。符号主义是说在建立模型任务的时候,首先定义各种变量,建立一个整体的计算图。计算图规定了各个变量之间的计算关系。建立好的计算图需要编译已确定其内部细节,但是此时的计算图还是一个空壳,里面没有任何数据,只需要你把需要的运算的数据转化为模型匹配的格式,才能在整个模型中形成数据流,从而形成输出值。准备数据,MNIST。对于MNIST来说,可以是图片识别领域的”h原创 2017-12-08 21:22:20 · 637 阅读 · 0 评论 -
【Keras】DNN神经网络模型
DNN(Deep Neural Network)神经网络模型又叫全连接神经网络,是基本的深度学习框架。与RNN循环神经网络、CNN卷积神经网络的区别就是DNN特指全连接的神经元结构,并不包含卷积单元或是时间上的关联。1、梳理一下DNN的发展历程神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,原创 2017-12-09 17:13:44 · 17912 阅读 · 0 评论 -
【Keras】中文文档学习笔记-快速上手Keras
基于中文官方文档与英文官方文档的学习笔记,较系统的总结学习历程。Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow、Theano以及CNTK后端。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras:简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) 支持CNN和RNN,或二者原创 2018-01-07 22:16:14 · 1864 阅读 · 0 评论 -
【keras】基本概念计算方法、Tensor张量、数据类型data_format、函数式模型、batch、epoch
1、符号计算 Keras的底层库使用Theano或TensorFlow,这两个库也称为Keras的后端。无论是Theano还是TensorFlow,都是一个“符号式”的库。符号主义的计算首先定义各种变量,然后建立一个“计算图”,计算图规定了各个变量之间的计算关系。建立好的计算图需要编译以确定其内部细节,然而,此时的计算图还是一个“空壳子”,里面没有任何实际的数据,只有当你把需要运算的输入放进原创 2018-01-08 14:42:37 · 8568 阅读 · 0 评论 -
【Keras】序贯模型Sequential学习笔记
序贯模型是多个网络层的线性堆叠,也就是“一条路走到黑”。1、通过Sequential构建模型 可以通过向Sequential模型传递一个layer的list来构造该模型:#导入序贯模型from keras.models import Sequential#导入神经网络前向传播层结构和激活函数from keras.layers import Dense,Activation#可以通原创 2018-01-08 15:17:00 · 1999 阅读 · 0 评论 -
【keras】序贯Sequential模型实例之MLP的二分类
MLP的二分类:# -*- coding: utf-8 -*-"""Created on Mon Jan 8 23:52:46 2018序贯模型实例@author: BruceWong"""#MLP的二分类:import numpy as npfrom keras.models import Sequentialfrom keras.layers import Dens原创 2018-01-08 23:52:43 · 2300 阅读 · 0 评论 -
【keras】序贯Sequential模型实例之基于多层感知器的softmax多分类
基于多层感知器的softmax多分类:# -*- coding: utf-8 -*-"""Created on Tue Jan 9 00:11:20 2018@author: BruceWong"""import kerasfrom keras.models import Sequentialfrom keras.layers import Dense, Dropout, A原创 2018-01-09 00:19:13 · 961 阅读 · 0 评论 -
【keras】序贯Sequential模型实例之类似VGG的卷积神经网络
类似VGG的卷积神经网络import numpy as npimport kerasfrom keras.models import Sequentialfrom keras.layers import Dense, Dropout, Flattenfrom keras.layers import Conv2D, MaxPooling2Dfrom keras.optimizers i原创 2018-01-09 00:22:53 · 975 阅读 · 0 评论 -
【keras】序贯Sequential模型实例之使用LSTM的序列分类
使用LSTM的序列分类from keras.models import Sequentialfrom keras.layers import Dense, Dropoutfrom keras.layers import Embeddingfrom keras.layers import LSTMmodel = Sequential()model.add(Embedding(max_原创 2018-01-09 00:25:11 · 6637 阅读 · 2 评论 -
【keras】序贯Sequential模型实例之使用1D卷积的序列分类
使用1D卷积的序列分类模型:from keras.models import Sequentialfrom keras.layers import Dense, Dropoutfrom keras.layers import Embeddingfrom keras.layers import Conv1D, GlobalAveragePooling1D, MaxPooling1Dmo原创 2018-01-09 00:27:26 · 3277 阅读 · 0 评论 -
【keras】序贯Sequential模型实例之用于序列分类的栈式LSTM
用于序列分类的栈式LSTM模型:在该模型中,我们将三个LSTM堆叠在一起,是该模型能够学习更高层次的时域特征表示。开始的两层LSTM返回其全部输出序列,而第三层LSTM只返回其输出序列的最后一步结果,从而其时域维度降低(即将输入序列转换为单个向量)from keras.models import Sequentialfrom keras.layers import LSTM, D原创 2018-01-09 00:30:18 · 2420 阅读 · 0 评论 -
【keras】函数式(Functional)模型学习以LSTM为例构建多输入和多输出模型及完整实例(二)
多输入和多输出模型:使用函数式模型的一个典型场景是搭建多输入、多输出的模型。考虑这样一个模型。我们希望预测Twitter上一条新闻会被转发和点赞多少次。模型的主要输入是新闻本身,也就是一个词语的序列。但我们还可以拥有额外的输入,如新闻发布的日期等。这个模型的损失函数将由两部分组成,辅助的损失函数评估仅仅基于新闻本身做出预测的情况,主损失函数评估基于新闻和额外信息的预测的情况,即使来自主损失函数原创 2018-01-12 11:39:20 · 12197 阅读 · 3 评论 -
【keras】函数式(Functional)模型学习构建全连接神经网络(一)
Keras函数式模型接口是用户定义多输出模型、非循环有向模型或具有共享层的模型等复杂模型的途径。一句话,只要你的模型不是类似VGG一样一条路走到黑的模型,或者你的模型需要多于一个的输出,那么你总应该选择函数式模型。函数式模型是最广泛的一类模型,序贯模型(Sequential)只是它的一种特殊情况。通过function模型构建全连接神经网络:# -*- coding: utf-8 -*-原创 2018-01-12 00:05:27 · 2780 阅读 · 0 评论 -
【机器学习】卷积神经网络(CNN)模型结构
图像输入层,通过卷积层(Convolution Layer)进行运算,然后池化,这两个是CNN特有的,卷积层的激活函数使用的是ReLU,池化就是对原矩阵进行压缩,得到一个值。原创 2017-12-19 17:06:33 · 2767 阅读 · 0 评论 -
【TensorFlow】神经网络优化MNIST数据最佳实践(十一)
本次结合变量管理机制和模型持久化机制,并且将训练和测试分为两个独立的模块,这样使得每个模块更加灵活,本次也将inference前向传播过程抽象为函数库,方便调用。原创 2017-12-17 13:36:21 · 976 阅读 · 0 评论 -
【TensorFlow】会话session(三)
会话拥有并管理TensorFlow程序运行的所有资源,当所有程序运行结束后需要关闭会话来帮助系统回收资源,否则就可能出现资源泄露的问题。原创 2017-12-11 21:35:36 · 777 阅读 · 0 评论 -
【TensorFlow】模型持久化tf.train.Saver—下(九)
tf.train.Saver类也支持在保存和加载时给变量重命名,声明Saver类对象的时候使用一个字典dict重命名变量即可,{“已保存的变量的名称name”: 重命名变量名},saver = tf.train.Saver({“v1”:u1, “v2”: u2})即原来名称name为v1的变量现在加载到变量u1(名称name为other-v1)中。原创 2017-12-15 16:16:57 · 1543 阅读 · 0 评论 -
【TensorFlow】关键字global_step使用(十)
global_step经常在滑动平均,学习速率变化的时候需要用到,这个参数在 tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_steps)里面有,系统会自动更新这个参数的值,从1开始。原创 2017-12-14 12:03:37 · 1644 阅读 · 0 评论 -
【TensorFlow】计算图graph的使用学习笔记(二)
TensorFlow程序一般分为两段,一段是定义计算图的计算,第二阶段是执行计算。原创 2017-12-11 17:43:24 · 1631 阅读 · 0 评论 -
【TensorFlow】模型持久化tf.train.Saver—上(八)
TensorFlow模型持久化以及tf.train.Saver的应用原创 2017-12-14 00:20:45 · 674 阅读 · 0 评论 -
【TensorFlow】变量管理tf.get_variables/tf.Variable/tf.variable_scope的应用(七)
TensorFlow变量管理tf.get_variables/tf.Variable/tf.variable_scope的应用原创 2017-12-13 13:12:10 · 6525 阅读 · 5 评论 -
【TensorFlow】框架学习笔记tensor(一)
简要阐述tensorflow基本框架原创 2017-12-08 15:31:18 · 651 阅读 · 0 评论 -
【TensorFlow】官方MNIST数据集神经网络实例详解(六)
根据MNIST数据实现完整的TensorFlow程序,构图逻辑是:先定义参数、接着定义神经网络模型,最后训练。原创 2017-12-12 21:57:00 · 3054 阅读 · 0 评论 -
【TensorFlow】神经网络模型训练及完整程序实例(五)
TensorFlow神经网络模型训练及完整程序实例原创 2017-12-12 14:25:17 · 9216 阅读 · 0 评论 -
【TensorFlow】神经网络参数与变量(四)
TensorFlow神经网络参数与变量原创 2017-12-12 00:20:39 · 1599 阅读 · 0 评论 -
【TensorFlow】优化方法optimizer总结(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)解析(十三)
本文仅对一些常见的优化方法进行直观介绍和简单的比较,主要是一阶的梯度法,包括SGD, Momentum, Nesterov Momentum, AdaGrad, RMSProp, Adam。 其中SGD,Momentum,Nesterov Momentum是手动指定学习速率的,而后面的AdaGrad, RMSProp, Adam,就能够自动调节学习速率。原创 2017-12-19 01:07:51 · 34428 阅读 · 2 评论 -
【keras】序贯Sequential模型实例之采用stateful LSTM的相同模型
采用stateful LSTM的相同模型:stateful LSTM的特点是,在处理过一个batch的训练数据后,其内部状态(记忆)会被作为下一个batch的训练数据的初始状态。状态LSTM使得我们可以在合理的计算复杂度内处理较长序列。from keras.models import Sequentialfrom keras.layers import LSTM, Denseimpor原创 2018-01-09 00:33:05 · 2246 阅读 · 2 评论
分享