抽象代数学习笔记(6)群与子群

前面的几篇文章介绍了抽象代数的基础,现在可以接触一种基本的代数结构—群。之前说过,代数结构就是在一个集合上定义一个运算。群也是如此,只是,群需要满足一些要求。

一个集合 G 以及定义在这个集合上的运算*满足下列条件:
* 运算*满足结合律;
* 运算*有一个单位元e
* 集合 G 中的每一个元素在运算* 有逆元,即G中任意元素 g ,有g1使得
gg1=g1g=e

这样,元素G和定义在G上的运算* 构成了一个群,记作 (G,) ,有时简称 G 是一个群。

我们接触到的群的例子其实有很多,例如整数在代数加法下构成群,实数在代数乘法上构成群,等等。
群有一些性质,需要注意:
* 群中的单位元是唯一的
* 群上的运算满足左右消去律
* 群上的运算不需要满足交换律,若满足交换律,则这个群是一个交换群。为纪念天才数学家阿贝尔对群论做出的杰出贡献,常称交换群为阿贝尔群。


研究代数系统经常要研究它的子代数系统,群也是这样,这就有了子群的概念。

(G,) 是个群,如果 G 的子集H对于*也构成群,那么称 (H,) (G,) 的子群。或者,简单地说, H G的子群。

前面说到整数在代数加法下构成群,而偶数在代数加法下也构成群,那么,偶数加法群是整数加法群的一个子群。
子群也有一些性质,下面列一下:
* 子群的单位元等于群的单位元
* G 是一个群,G的任意一个子群族的交集仍然是 G 的子群
* H,K G 的子群,如果H,K的并集也是 G 的子群,那么HK或者 KH

这些性质的证明很简单,有兴趣的可以试一下。

这里提一个比较重要的概念,生成子群

G 是个群,S为其一非空子集合, J G的所有包含 S 的子群的族,则称子群

HJH

S G中的生成子群。记作< S <script type="math/tex" id="MathJax-Element-136">S</script>>

之所以说生成子群重要,主要是因为生成子群的诸多应用,先记住上述概念,以后会在其他的例子中引用。

我在介绍关系的文章中说到过商代数系统,群作为一个代数系统自然是有商代数系统的—商群。但是现在讲商群的概念为时过早,要说明一下,商群是一个很难理解的概念,需要了解更多群的实例,才能对商群有个清晰的认识,因此,商群会在以后的文章中具体论述。

  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值