
给定一个由n行数字组成的数字三角形如下图所示。试设计一个算法,计算出从三角形的顶至底的一条路径,使该路径经过的数字总和最大和路径。
输入数组:
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输出:
最大:30
路径:7 3 8 7 5
普通思维
从上到下,一个一个的遍历然后相加对比。那就是把所有的可能都要走一遍,然后比对最大的一个数出来,然后打印路径。那么这个所有的路径就非常多了,而且会跟着层数的增加成几何倍数的增加,所以这种比对方式肯定是不对的。
//java代码纯属自己练习,标准答案参考上面的c语言答案
class solution{
public int getMax(){
int MAX = 101;
int[][] D = new int[MAX][MAX]; //存储数字三角形
int n; //n表示层数
int i = 0; int j = 0;
int maxSum = getMaxSum(D,n,i,j);
return maxSum;
}
public int getMaxSum(int[][] D,int n,int i,int j){
if(i == n){
return D[i][j];
}
int x = getMaxSum(D,n,i+1,j);
int y = getMaxSum(D,n,i+1,j+1);
return Math.max(x,y)+D[i][j];
}
}
其实仔细观察,上面的解答过程时间复杂度难以想象的大,那是因为他对有的数字的解进行了多次的重复计算;
二叉树思维
前序遍历不行,那么使用后序遍历呢,从最后一层往上寻找最大的数,每一层级的相邻的两个数都相加它上一个节点的数字,比对找出最大的数,写入一个数组,然后以此递归,最后这个数组中的第一层就是最大的和。
public void runFunc() {
int numbers[][] = {{7}, {3, 8}, {8, 1, 0}, {2, 7, 4, 4}, {4, 5, 2, 6, 5}};
int numbers1[][] = {{7}, {3, 8}, {8, 1, 0}, {2, 7, 4, 4}, {4, 5, 2, 6, 5}};
for (int i = numbers.length-2; i>=0 ; i--) {
int index = i+1;
int[] child = numbers[i];
for (int j = 0; j <child.length ; j++) {
int num = child[j];
int left = numbers[index][j];
int right = numbers[index][j+1];
if(num+left>num+right){
child[j]=num+left;
}else{
child[j]=num+right;
}
}
}
int index = 0;
for (int i = 0; i < numbers.length; i++) {
// 打印路径
System.out.println(numbers1[i][index]);
if(i<numbers.length-1&&numbers[i+1][index]<numbers[i+1][index+1]){
index++;
}
}
System.out.println("最大值:"+numbers[0][0]);
}
执行后numbers中的数组结构,那么最后直接取最大值就是30
30
23 21
20 13 10
7 12 10 10
4 5 2 6 5
获取打印路径的代码部分就是根据顶端的值然后一层一层的比对。每次比对左右两个值,如果右边的大于左边的值,那么index就+1,反之如果左边的大于右边index不变,直接寻找下一层的index位置值,并且比对它的子节点的左右值的大小。(对比三角形层级图更好理解)比如30的子节点是23和21,那么左边大于右边,继续寻找23的下一节点的左右子节点的值,20大于13,继续寻找20的下一节点的左右子节点的值,12大于7,那么index+1.继续寻找下级子节点5和2.。。。以此打印所有的子节点得到路径。
int index = 0;
for (int i = 0; i < numbers.length; i++) {
// 打印路径
System.out.println(numbers1[i][index]);
if(i<numbers.length-1&&numbers[i+1][index]<numbers[i+1][index+1]){
index++;
}
}
2191

被折叠的 条评论
为什么被折叠?



