Python实大模型文章的RSS订阅采集器 从YAML配置文件读取配置信息从多个源获取RSS订阅解析订阅并提取相关信息基于相关性过滤内容将收集到的数据存储到MySQL数据库中通过这个项目,我们实现了一个功能完整的RSS订阅采集器。它不仅可以自动收集多个来源的RSS内容,还能进行内容过滤和存储。通过使用日志记录、错误处理和批量操作等最佳实践,我们确保了程序的可靠性和效率。你可以基于这个基础实现,根据自己的需求进行定制和扩展,比如添加更多的数据源、实现更复杂的过滤逻辑,或者集成到其他系统中。
使用 LLM 实现高质量技术文档翻译:我们的实践与经验 在开源技术社区中,大量优秀的文档仍然只有英文版本,这对中文用户造成了一定的使用障碍。为了让更多中文开发者能够方便地使用这些技术,我们开发了一套基于大语言模型的文档翻译流程,并已经成功翻译了vllm、sglang等中文文档。本文将详细介绍我们的翻译方法、技术实现以及已完成的翻译项目
大模型训练显存需求分析指南:从SFT到RLHF的实践之路 随着大模型技术的快速发展,越来越多的研究者和开发者开始尝试自己训练或微调大模型。然而,大模型训练最大的门槛之一就是算力资源,特别是GPU显存的需求。本文将从实践角度出发,详细分析大模型训练中的显存需求,帮助读者更好地规划自己的训练资源。
分享一个找到高质量大模型技术文章的好去处 最近在使用一个叫LlamaFactory的技术文章聚合站点,觉得挺不错,想分享下使用体验。这个站点主要收集了来自知乎、CSDN、微信公众号等渠道的大模型技术文章,内容都很"干",基本都是实打实的技术经验分享
一站式大模型API速查宝典:为开发者整理的多平台调用资源 在大模型百花齐放的今天,开发者往往需要花费大量时间在不同平台间切换,查找文档、对比接口。为了解决这个痛点,我们创建了一个集成了各大模型平台API信息的速查资源。这包括了从OpenAI到Gemini,从百川智能到腾讯混元等主流大模型平台的调用信息,全部集中在一处,方便开发者快速查找和使用。
Cursor AI编辑器:开发效率提升利器 通过llamafactory.cn的开发经历,我体会到Cursor配合v0.dev真的巨提升开发效率。它不仅节省了大量编码时间,还提供了高质量的代码建议和智能的问题解决方案。我强烈推荐尝试这种开发方式当然,工具终归是工具,关键还是要不断提升自己的编程能力和系统设计能力。AI工具能够帮助我们更快地实现想法,但不能替代对技术的深入理解。希望这篇文章能够帮助大家在实际项目中更好地利用AI工具,提升开发效率。
如何使用VSCode调试大模型训练代码 在开发和调试大模型训练代码时,使用print语句进行调试往往效率低下且容易遗漏重要信息。本文将介绍三种使用VSCode进行交互式debug的方法,让你的调试过程更加高效和精确。
快速构建集成ChatGPT的智能聊天机器人后端服务:FastAPI、Django与Flask的最佳实践 在当今快速发展的技术领域,集成大模型(如ChatGPT)为后端服务提供了前所未有的可能性。本文将探讨使用和快速构建高效的智能后端服务的关键技术,帮助开发者在构建过程中提高效率和可维护性。完整代码见:https://www.llamafactory.cn。
两个人+AI做了个AI工具平台 最近和我的小伙伴2个人做了一个网站:LlamaFactory - AI开发者的高效工具平台地址:https://www.llamafactory.cn先说下基本情况,我主要擅长自然语言处理。我的同伴擅长前端、运维,后端接口写得非常非常少。我同伴。
如何使用大模型高效生产|蒸馏数据[含完整代码] 大模型出现之前我们的训练数据大都依赖人工标注、开源数据以及从线上数据中构造合适的监督数据,如果开源数据不太符合我们的业务需求(大部分情况下无法直接满足要求),且已有的线上数据也没办法抽取出符合要求的监督数据,这个时候恐怕只能依赖于人工标注了,但是人工标注又非常的耗费人力和时间。大模型出现后给我们提供了新的选择,我们可以通过构造高质量的prompt使用大模型给我们生产数据。原理其实很简单,所以本次分享的重点其实不在于原理,主要是想将本人工作中经常使用的一套代码分享出来,供大家直接使用。
混合精度训练数据类型详解 1. 不同操作使用的数据类型a) 模型参数和激活值: FP16原因: 减少内存使用,允许更大批量或更大模型 优势: FP16只需FP32一半的内存空间b) 梯度计算: FP16原因: 加速反向传播,减少内存使用 注意: 需要使用损失缩放防止梯度消失c) 主要计算(如矩阵乘法): FP16原因: 提高计算速度,减少内存带宽需求 优势: 现代GPU对FP16运算有硬件级优化d) 关键操作(损失计算和权重更新): FP32原因: 保持数值稳定性和训练精度 重要性: 这些操作对训练
DeepSpeed ZeRO-3 内存估算 DeepSpeed ZeRO-3 提供了灵活的内存优化选项,允许在不同的硬件配置下高效训练大型模型。理解各参数的作用及其相互影响对于优化训练过程至关重要。在实际应用中,需要根据具体的模型大小、硬件资源和训练需求来选择最合适的配置。
在Linux上部署FastAPI和Flask应用的最佳实践 在Web开发领域,选择合适的框架和部署策略对应用的性能和可维护性至关重要。本文将详细介绍如何在Linux系统上部署FastAPI和Flask应用,使用Gunicorn作为WSGI服务器,并用Nginx作为反向代理。这种设置适合小型到中型的生产环境,提供了良好的性能、安全性和可扩展性。