浅谈背包

浅谈背包

By 布垃圾 2020.9.6

luogu博客

背包问题也是动态规划中一个很经典的问题
其问题主要框架为:有一个体积为 V V V的背包(花费上限),有n件物品,第 i i i件物品的体积为 c [ i ] c[i] c[i],价值为 w [ i ] w[i] w[i],问最大价值。
当然,不同的题会对物品有不一样的限制,比如对物品数量的限制,对物品关系的限制,因此就有了不同种类的背包问题。

Part 1 01背包

问题描述

N N N件物品和一个容量为 V V V的背包。放入第 i i i件物品耗费的空间是 C i C_i Ci,得到的价值是 W i W_i Wi
求在不超过容量的前提下,将哪些物品装入背包可使价值总和最大。

特点:每个物品有且仅有一件,可选择放或不放

定义状态 f [ i , j ] f[i,j] f[i,j]表示前 i i i个物品放入容量为 j j j的背包可得到的最大价值。
转移方程:
f [ i , j ] = max ⁡ { f [ i − 1 , j ] f [ i − 1 , j − C i ] + W i ( j − C i ≥ 0 ) f[i,j]=\max \begin{cases} f[i-1,j]\\ f[i-1,j-C_i]+W_i(j-C_i\geq 0)\\ \end{cases} f[i,j]=max{f[i1,j]f[i1,jCi]+Wi(jCi0)

为了打个公式花了0.5h

优化1:滚动数组

优化2:降维

这里不再过多赘述,直接上代码

int n,v;
int f[V],c[N],w[N];
int main()
{
    n=read(),v=read();
    FOR(i,1,n) c[i]=read(),w[i]=read();
    FOR(i,1,n)
    	REP(j,v,c[i])
    		f[j]=max(f[j],f[j-c[i]]+w[i]);
    writ(f[v]);
    return 0;
}

问题描述

N N N件物品和一个容量为 V V V的背包。放入第 i i i件物品耗费的空间是 C i C_i Ci,得到的价值是 W i W_i Wi
求背包刚好装满时,将哪些物品装入背包可使价值总和最大。

这里的初始化需要修改一下。因为 f [ i ] f[i] f[i](降维后)表示的是容量为 i i i,且刚好装满的最大价值,但 f [ 1 → v ] f[1 \to v] f[1v]在初始(什么都不放)时,是不合法的,所以要赋值为-INF

int n,v;
int f[V],c[N],w[N];
int main()
{
    n=read(),v=read();
    FOR(i,1,n) c[i]=read(),w[i]=read();
    FOR(i,1,v) f[i]=-INF;
    FOR(i,1,n)
    	REP(j,v,c[i])
    		f[j]=max(f[j],f[j-c[i]]+w[i]);
    writ(f[v]);
    return 0;
}

Part 2 完全背包

如果不限定每种物品的数量,同一样物品想拿多少拿多少,则问题称为无界或完全背包问题。
如果一件物品没有件数限制,那么我们可以取 0 , 1 , 2 , . . . 0,1,2,... 0,1,2,...至多可以取 C / w [ i ] C/w[i] C/w[i]件,按照之前的分析,状态转移方程可以改写为
f [ i , j ] = max ⁡ { f [ i − 1 , j − C i × K ] + W i × K ( j − C i × K ≥ 0 ) } f[i,j]=\max \{ f[i-1,j-C_i\times K]+W_i\times K(j-C_i\times K\geq 0) \} f[i,j]=max{f[i1,jCi×K]+Wi×K(jCi×K0)}

代码

int n,v;
int f[V],c[N],w[N];
int main()
{
    n=read(),v=read();
    FOR(i,1,n) c[i]=read(),w[i]=read();
    FOR(i,1,n)
    	FOR(j,c[i],v)
    		f[j]=max(f[j],f[j-c[i]]+w[i]);
    writ(f[v]);
    return 0;
}

Part 3 多重背包

多重背包,即物品个数不是无限个,也不是1个,而是给定的 s s s个。

做法1

如果超过了 C / w [ i ] C/w[i] C/w[i]个,当成完全背包做;
否则转化为 s s s个物品,转化为01背包。

做法2

与完全背包类似,改变 K K K的取值范围。

做法3

使用二进制优化。
每件替代品有一个系数,这件替代品的费用和价值均是原来的费用和价值乘以这个系数。

使这些系数分别为 1 , 2 , 4 … , 2 k − 1 , m i − 2 k + 1 1,2,4…,2^{k-1},mi-2^k+1 1,2,4,2k1,mi2k+1 k k k是满足 m i − 2 k + 1 > 0 mi-2^k+1>0 mi2k+1>0的最大整数。

优化

使用做法1+做法3,即转化为01背包时使用二进制优化

code

int n,t,v;
int c[N],w[N];
int f[V];
signed main()
{
	t=read(),v=read();
	while(t--)
	{
		int tw=read(),tc=read(),s=read(),tot=1;
		while(s>=tot)
			s-=tot,++n,c[n]=tot*tc,w[n]=tot*tw,tot<<=1;
		if(s>0) ++n,c[n]=s*tc,w[n]=s*tw;
	}
	FOR(i,1,n)
		REP(j,v,c[i])
			f[j]=max(f[j],f[j-c[i]]+w[i]);
	writ(f[v]);
    return 0;
}

1.做题目一定要想清楚是不是背包。

2.转移方程一定要推正确,可以用草稿纸模拟一下。

3.注意数据范围

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值