当前搜索:

[置顶] 20行代码实现电影评论情感分析

背景情感分析有很多的应用场景,比如做一个电商网站,卖家需要时刻关心用户对于商品的评论是否是正面的。再比如做一个电影的宣传和策划,电影在键盘侠们中的口碑也至关重要。互联网上关于任何一个事件或物品都有可能产生成千上万的文本评论,如何定义每一个文本的情绪是正面或是负面的,是一个很有挑战的事情。挑战体现在...
阅读(3826) 评论(9)

[置顶] 用深度学习做球星颜值打分完整案例(一)

已经上传了完整的代码和数据,数据比较少,大家可以帮忙补充。项目地址(记得给个start):https://github.com/jimenbian/face_rank先来说一下项目的背景,这次做的是一个最基础的图像识别案例,通过训练一个模型来给NBA球星的颜值打分,嗯,楼主麦迪、艾弗森球迷。选择N...
阅读(1120) 评论(0)

[置顶] 深度学习RNN实现股票预测实战(附数据、代码)

背景知识最近再看一些量化交易相关的材料,偶然在网上看到了一个关于用RNN实现股票预测的文章,出于好奇心把文章中介绍的代码在本地跑了一遍,发现可以work。于是就花了两个晚上的时间学习了下代码,顺便把核心的内容翻译成中文分享给大家。 首先讲讲对于股票预测的理解,股票是一种可以轻易用数字表现律动的交易...
阅读(3876) 评论(1)

[置顶] 【机器学习PAI实践十二】机器学习实现双十一购物清单的自动商品标签归类

背景双十一购物狂欢节马上又要到来了,最近各种关于双十一的爆品购物列表在网上层出不穷。如果是网购老司机,一定清楚通常一件商品会有很多维度的标签来展示,比如一个鞋子,它的商品描述可能会是这样的“韩都少女英伦风系带马丁靴女磨砂真皮厚底休闲短靴”。如果是一个包,那么它的商品描述可能是“天天特价包包2016...
阅读(3887) 评论(2)

[置顶] 为什么要写《机器学习实践应用》这本书

预售地址: https://item.jd.com/12114501.html历经了10个月,《机器学习实践应用》这本书终于面世了。首先呢,因为我的工作比较忙,只能抽一些周末或者是下班以后的时间进行写作,另外书的发布流程是一个漫长的过程。所以当这本书出版的时候,我感到熟悉又陌生,熟悉是因为书中的...
阅读(4730) 评论(3)

图像拐点检测-原理以及代码实现

今天带来的内容只用两个字形容-干货!!首先我们科普下图像识别的常识,图片在电脑看来,其实就是一个矩阵,每个矩阵中的一个值都对应图片的一个像素点。(下图摘自《机器学习实践应用》)图片中其实是有很多的边以及拐角的,今天要介绍的就是如何通过算法找到图片拐角。  原理其实找到拐角,很简单,就是在图片矩阵中...
阅读(1104) 评论(3)

5行python代码讲清楚如何在区块链挖矿

之前发了好几篇讲区块链的,还有同学说不懂,今天我就试试用最少的话讲明白挖矿,背景知识可以参考下我之前发的内容。 先说下哈希是啥,哈希就是每个东西的唯一标识,比如x的哈希:hash(x)=ga8e9hea7h8ae89h78aeh9r 区块链就是一个一个区块,每个区块是一个哈希 挖矿就是已知...
阅读(51) 评论(0)

五句话了解区块链,扫盲系列

1.区块链解决了啥问题一个东西有价值,一定是解决了一个社会上的痛点。我们说人工智能是未来的趋势,因为它主要解决的是生产力的升级问题,工业革命代替人的简单体力劳动,人工智能代替的是例如思考之类的复杂劳动。区块链解决的是生产关系的问题,也就是信任的问题,想一下为什么淘宝需要有支付宝,因为如果没拿到货而...
阅读(6258) 评论(20)

浅谈文本词向量转换的机制embedding

首先感谢大家对上一篇文章的关注吧,建议看这篇文章前先看下上一篇我推送的《20行代码实现电影评论情感分析》,上篇文章其实留了个坑,不过不一定坑到大家,因为可能90%的同学可能不会去认真读一遍代码,或者去跑一下程序。上文说道关于文本词向量转换的embedding相关的内容,其实是没有详细说明的,那这一...
阅读(121) 评论(0)

聊聊互联网实习相关的事儿

过年回来啦,其实之前答应了群里的同学分享一下关于实习的一些事情,跳票到了今天,实在不好意思。其实找实习这个事情就有点像我们考试做题目,需要分两方面看,一方面需要去想为什么老师出这道题,第二方面去想我要怎么解才是对的。先来扯扯为啥公司会招聘实习生,无外乎两种可能性:以部分外企或者小创业公司为主,有很...
阅读(226) 评论(0)

[特征工程系列三]显性特征的衍生

前一文讲的是一些特征的基础处理方式,包括怎么降维、怎么处理脏数据等等。其实特征工程真正的难点是如何结合业务需求衍生出新的特征。结合业务需求讲的是利用专家经验来提取出数据里对结果影响更大的特征,往往是原有数据字段通过加减乘除等操作生成新的字段,这些字段在结合一些线性算法做训练的时候往往能起到提升模型...
阅读(189) 评论(0)

[特征工程系列二]显性特征的基本处理方法

今天接着前一篇文章讲,主要分享基于显性特征工程的一些最基本的处理方法。关于显性特征是什么,大家可以去看系列文章一。关于显性特征的处理方法可以做这样的类比:不知道大家平时会不会自己做菜,我个人的话基本每周都会做。我们从菜市场买的菜,不经过处理是不能下锅的,因为需要清洗、摘取烂的叶子、切段等操作后才可...
阅读(168) 评论(0)

[特征工程系列一] 论特征的重要性

满打满算,还有十天左右就要过年了,这些天大家或多或少都有点浮躁。反过来想,趁大家都懈怠的时候,正是学习的最佳时机。趁着这几天,也给自己加点码,去认真的再看一下特征工程。我给自己列了下面的这一份学习清单,也会在过年前后逐一分享给大家。《特征工程系列二,显性特征的基本处理方法》:讲一下如何处理数据特征...
阅读(253) 评论(0)

深度学习实现NBA球星颜值打分完整案例(二)

已经上传了完整的代码和数据,数据比较少,大家可以帮忙补充。项目地址(记得给个start):https://github.com/jimenbian/face_rank 最近咳嗽加班比较严重,耽误了几天,今天接着之前的文章来讲。在上一篇文章中我们已经生成了预测模型,今天要做的事情很简单,就是调用这个...
阅读(261) 评论(0)

GPU高效通信算法-Ring Allreduce

今天介绍一种新的GPU多卡计算的通信优化算法—Ring Allreduce。先来讲一下常规的GPU多卡分布式计算的原理。第一点:我们知道GPU在矩阵并行化计算方面非常有优势,所以适合深度学习的训练。第二点:使用多个GPU卡训练同一个深度学习任务就是分布式计算。第三点:在分布式计算过程中,需要对计算...
阅读(796) 评论(0)

机器学习入门书籍导读-工程高等代数

今天要分享的是一本叫做《工程高等代数》的书,这门课简称高工代,应该很多工科生都会要求学的吧,我看的这版我觉得应该算内容比较全的,是北邮出版的不太好找,我直接把购买链接贴到这:https://item.taobao.com/item.htm?spm=a230r.1.14.16.3a7b277aWak...
阅读(345) 评论(0)

产品的三层境界:工具-平台-生态

这两天一直在想一件事情,就是最一款产品要发展,要生存,究竟要经历几个阶段,算下来大致要有工具、平台、生态这三个阶段,不断递进的关系。第一阶段是工具,我从前是做开发的,当时在做手机的app,那个时候在我的眼里一个软件能否成功的关键因素是功能。想的更多的是用了哪些牛逼的库,增设了哪些功能。做一款工具需...
阅读(465) 评论(0)

彻底搞懂CNN

上世纪科学家们发现了几个视觉神经特点,视神经具有局部感受眼,一整张图的识别由多个局部识别点构成;不同神经元对不同形状有识别能力,且视神经具有叠加能力,高层复杂的图案可以由低层简单线条组成。之后人们发现经过conclusional的操作,可以很好反映视神经处理计算的过程,典型的是1998年LeCun...
阅读(752) 评论(0)

机器学习入门书籍导读-高等数学上

我们每周会更新一篇关于机器学习入门书籍的导读文章,会覆盖数学、编程、机器学习算法理论以及机器学习应用这四个板块。希望通过这些导读文章,可以帮助同学们更有针对性的掌握机器学习相关的内容。今天我们要讲的是我觉得整个学习体系中最重要的一本书,由同济大学数学系编制的高等数学上册,这本书非常之经典,是很多大...
阅读(832) 评论(0)

TensorFlow Lite+Android,Google要搞的大事情

近日谷歌开源了TensorFlow的终端版本TensorFlow Lite,这个版本的发布其实早在预料之中,但又能从这件事看出未来谷歌整个生态版图的一些端倪,接下来就让博主为大家分析一下。首先为什么说TensorFlow Lite的发布早在意料之中呢?因为TensorFlow在之前的版本中已经发布...
阅读(1401) 评论(0)
    统计

    主要讲述算法和业务的结合,适合初学者

    机器学习实践应用

    京东地址

    作者公众号:凡人机器学习

    凡人机器学习

    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 89万+
    积分: 1万+
    排名: 1616
    博客专栏