自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

李博Garvin的专栏

阿里云机器学习PD

原创 20行代码实现电影评论情感分析

背景情感分析有很多的应用场景,比如做一个电商网站,卖家需要时刻关心用户对于商品的评论是否是正面的。再比如做一个电影的宣传和策划,电影在键盘侠们中的口碑也至关重要。互联网上关于任何一个事件或物品都有可能产生成千上万的文本评论,如何定义每一个文本的情绪是正面或是负面的,是一个很有挑战的事情。挑战体现在以下几个方面,区别于结构化数据,评论数据的长短不一,很难限定到固定的维度。另外很难通过某个词判断用户的...

2018-03-09 09:33:17 9171 10

原创 用深度学习做球星颜值打分完整案例(一)

已经上传了完整的代码和数据,数据比较少,大家可以帮忙补充。项目地址(记得给个start):https://github.com/jimenbian/face_rank先来说一下项目的背景,这次做的是一个最基础的图像识别案例,通过训练一个模型来给NBA球星的颜值打分,嗯,楼主麦迪、艾弗森球迷。选择NBA的数据是因为,NBA球星都有正装照,比较好收集。我们最终呈现的效果是这样的:先收集球星大脸照,标记

2018-01-18 09:32:27 4079 1

原创 深度学习RNN实现股票预测实战(附数据、代码)

背景知识最近再看一些量化交易相关的材料,偶然在网上看到了一个关于用RNN实现股票预测的文章,出于好奇心把文章中介绍的代码在本地跑了一遍,发现可以work。于是就花了两个晚上的时间学习了下代码,顺便把核心的内容翻译成中文分享给大家。 首先讲讲对于股票预测的理解,股票是一种可以轻易用数字表现律动的交易形式。因为大数定理的存在,定义了世间所有的行为都可以通过数字表示,并且存在一定的客观规律。股票也不例外

2017-12-23 17:01:02 53590 33

原创 为什么要写《机器学习实践应用》这本书

预售地址: https://item.jd.com/12114501.html历经了10个月,《机器学习实践应用》这本书终于面世了。首先呢,因为我的工作比较忙,只能抽一些周末或者是下班以后的时间进行写作,另外书的发布流程是一个漫长的过程。所以当这本书出版的时候,我感到熟悉又陌生,熟悉是因为书中的内容经过了多次校对已经印到我的脑子中了,陌生是距离刚开始写这本书已经过去接近一年,对于当时的状态有一些陌

2017-07-03 08:59:56 7659 5

原创 浅谈最广泛应用的金融风控算法-评分卡

背景信用是一切社会金融体系的根本,有了每个人的信用我们才可以进行放贷、共享充电宝、共享单车等业务。如果可以准确的给每个社会成员的信用做一个打分,将对金融业务的推进有很大作用,很多相关业务的企业也在探索如何实现信用分。目前业内最通用的方案是评分卡算法,这个算法底层其实就是简单地二分类模型,将逻辑回归或者xgboost进行封装。但是为什么不能直接使用xgboost甚至深度学习算法做信用评估呢?因为金融业务有自己的特殊性,要求模型需要有强解释性,所以评分卡解决方案经常包含分箱和评分两个模块。就是.

2020-08-03 20:26:57 62

原创 详解TF-Ranking:Google开源的排序框架,应用于邮件检索、推荐系统等场景

今天分享的是一个有关LTR框架的介绍,LTR是Learning-To-Rank,解决的是排序问题。排序问题在人工智能领域应用很广,比如在Gmail里搜索一个关键词,返回最匹配的邮件。再比如进入Google Drive后的一些文章推荐。傲海的分享主要参考Google2019年发布的一篇论文《TF-Ranking:Scalable TensorFlow Library for Learning-to-Rank》,蛮长的,看了小一周才学习完。这个库已经开源了,大家可以在下方地址访问并使用:https://

2020-07-26 11:24:16 68

原创 Google AutoML最新技术解析:AutoML-Zero,从0构建模型

AutoML是我一直很关注的领域,也实际设计过相关的很多功能,但是目前AutoML在商业化层面落地的还不多。一个关键因素是AutoML现在在Feature生成或者调参方面有一些应用,但是这些应用更多地是建模的辅助。目前的AutoML技术很难实现从0构建一个算法。如果AutoML希望大规模的应用,一定要在NAS,也就是网络探索上有建树。这也是Google最新发表的这篇文章的原因,他提出AutoML-Zero,从零起步去构建算法。接下来作者会给大家分享下一些看法。定义算法生成的流程这篇论文比较有意思的一

2020-07-17 17:25:30 95

原创 最全推荐系统Embedding召回算法总结
原力计划

最近特别忙,工作日几乎没什么时间学习。平时攒了一堆推荐相关的文章,趁周末整体学习了一下。主要是参考了网上的一篇技术文章(迄今为止我看到的比较好的推荐Embedding总结)以及我自己的一些理解。​Embedding概念首先一些概念性的内容要科普下。推荐系统分召回和排序,召回为将每个用户找出他可能喜欢的物品的候选集,排序是对候选集按照用户的喜爱程度进行排序,最终得出给用户推荐的结果。在推荐系统的召回阶段,需要对每个用户和每个被推荐物品做数学层面的表示,目前比较主流的方法是通过向量,也就是Em.

2020-07-05 12:14:36 281

原创 互联网男士穿搭推荐-2020年新版

本文仅限互联网行业。因为根据我混迹本行业多年的经验,大部分同学的穿搭都有待提升,特别是程序员。另外,因为互联网行业对于着装没有什么要求,所以本文以休闲服饰为主。所有介绍的品牌都是作者自己平时经常穿的牌子。不能帮大家变成潮男,可以让大家穿的稍微阳光点1 开篇首先,挑衣服就跟选基金一样,要先挑基金经理,然后买这个对应基金经理的基金就ok了。穿搭一定要先选品牌,选好自己喜欢的牌子,再挑这些牌子下的各种款式的衣服。另外,轻易不要网购,最好实体店购买。这样可以搭配同一家店的多件衣服,挑上身效果比较好的。而

2020-06-24 23:08:28 2036 2

原创 实操将TensorFlow模型部署成Docker服务化

背景深度学习模型如何服务化是一个机器学习领域工程方面的热点,现在业内一个比较主流的做法是将模型和模型的服务环境做成docker image。这样做的一个好处是屏蔽了模型对环境的依赖,因为深度学习模型在服务的时候可能对各种框架版本和依赖库有要求,解决运行环境问题一直是个令人头痛的事情。将模型通过docker服务化后意味着深度学习模型可以在各种环境使用,比如云端直接通过k8s调度拉起,或者在一些IOT领域,比方说一些智能摄像头也可以通过拉起镜像服务的方式使用模型。看来一些网上的资料,发现大.

2020-06-19 17:49:22 215

原创 浅谈主动学习(Active Learning)

1背景概述在机器学习领域有很多学习模式,比方说监督学习、半监督学习、强化学习、无监督学习等。平时大家接触比较多的一般都是监督学习,在监督学习里面,比方说要做个人和鱼的图像分类模型,假设有200张图片,那就需要把这200张样本都打好标记再训练。监督学习存在很多问题,比如最直接的一点,当样本打标成本很高的时候,比如要标记一个人脸,可能需要在图片上打上百个点,用监督学习很消耗资源。主动学习(Active Learning)很好地解决了这个问题,主动学习的本质是让训练样本的利用率最大化,今天就来介.

2020-06-18 17:25:08 172

原创 开源机器学习模型管理工具DVC介绍

算法工程师往往在使用算法的过程中要不断地调整参数去找到最好的效果,俗称“调参民工”。在不断的调参过程中,会产生各种各样的模型,如何记录好这些参数与模型效果对应的关系,往往另算法工程师很头疼。所以大家都在呼唤一款实用的模型管理工具,因为有了版本管理机制才能更好的做效果比对,甚至多人协同开发。今天就介绍一款开源的模型管理工具-DVC:https://dvc.org/doc/tutorials/get-started/experiments1模型版本控制的误区在设计模型版本管理功能的时候有一个误区,.

2020-06-05 18:23:41 317

原创 支付宝扫一下就能体验的深度学习模型

背景我们最近跟支付宝合作做了一款应用,挺有意思的分享给大家。这个产品好玩的一点就是把ToB产品赋予了ToC的属性,任何没有算法背景的同学,只要做简单的标记就可以生成一个图像相关的模型,拿支付宝扫下二维码就可以体验效果。不信拿出你的支付宝扫下这个二维码打开应用,然后在应用中扫下下面这个图你会发现图像模型自动的识别出了名为BANGO的小吃,并且在画面中框了出来,像下图这样,是不是很好玩。自己动手搞一个制作这样的一个模型只需要10分钟,最近公测免费,并且不需要任何算法背景.

2020-05-22 17:01:36 469

原创 独家解析英伟达最新GPU-A100对AI行业带来的影响

最近英伟达发布了最新GPU-A100,当我们先后经历了K系列、M系列、P系列、V系列之后,这一次的A系列发布又会带来哪些影响,未来行业的走势如何,新入行的同学究竟选择哪个领域入门比较合适。今天我将从3个方向为大家一一剖析, 计算力变强了,会给行业带来什么影响 计算力变便宜了,会给行业带来什么影响 英伟达的野心在哪里,对行业有什么影响 1 计算力变强的影响这次新的GPU在算力方面变强的幅度是比较夸张的,根据官方数据显示,在Bert模型的场景下,训练和预测都有大幅度的提升。

2020-05-16 17:42:41 640

原创 运筹学vs机器学习

在西方一些国家,运筹学是非常热门的一个领域,很多公司都会保留大量的运筹学专家。但是在国内,运筹学理论除了在考研中有一些声音,在企业的业务中的应用还不算多,特别是相比于算法工程师的数量,运筹学专业的从业者相对较少,后续随着工业数字化的提升,运筹学一定会成为热点业务交叉度运筹学研究的问题可以归纳为:“依照给定条件和目标,从众多方案中选择最佳方案。”所以也有人称之为最优化技术。机器学习研究的问题是如何从历史的经验数据,通过数据建模的方式生成经验模型。从业务角度来看,运筹学和机器学习有很大的交.

2020-05-14 19:48:08 294

原创 浅析Faiss在推荐系统中的应用及原理

之前在业务中应用了许多Faiss,也看了几篇关于Faiss的论文,简单记录下Faiss的一些属性和应用。Faiss是Facebook的AI团队开源的一套用于做聚类或者相似性搜索的软件库,底层是用C++实现。Faiss因为超级优越的性能,被广泛应用于推荐相关的业务当中。接下来分Faiss在推荐业务应用和Faiss的基本原理两部分进行介绍。1Faiss在推荐业务中的应用在我的认知里,基本上5...

2020-05-05 19:47:37 440

原创 如何用深度学习模型为自己做个漫画画像(含代码流程)

最近看到一个特别有意思的开源项目,能把照片自动转化成漫画效果,经过半个小时的调试,终于跑通了。正先给大家看下实际效果,我在网上的随便搜了一张帅哥的证件照片试了下。基本上会把脑袋切出来,然后放大眼睛。原照:漫画效果后:使用的是开源项目:https://github.com/minivision-ai/photo2cartoon具体原理直接摘录read.me的一段描述:人像...

2020-04-23 19:28:55 1322

原创 在阿里工作四周年记

一转眼来阿里已经四年,也是我工作的第四年。四年是一个关键的节点,本科生需要学习四年才可以去研究生阶段深造,意味着如果在一个领域做四年,应该已经具备了扎实的基础,剩下的是如何升华。在阿里这四年,整体下来,非常感谢阿里给我创造的环境,未来很长时间依然想继续在这家公司深造。网上有很多人会评判这家公司,有各种各样的言论,但是因为这是一家几十万人的公司,真的不能说某个人的观点就能概况公司的状态,对于个人...

2020-04-05 10:15:02 4753 8

原创 华为开源深度学习框架MindSpore背后的商业野心

最近华为开源了深度学习框架MindSpore,一时成为了热点。我之前也点评了很多微软、Google、腾讯等厂商的框架,有些点评文章还被官方社区收录,今天为大家解析下MindSpore。首先阐明下我个人的观点,华为开源深度学习框架,从技术角度没有太大新意,从生态角度已经初显华为的庞大商业野心。01 生态>商业模式>技术首先在今天这个人工智能商业竞争的格局下,单谈任何一个技术的...

2020-03-30 18:30:35 4775

原创 布隆过滤器原理及在推荐业务的应用

提到布隆过滤器总想起上大学时候学习的什么切比雪夫滤波器之类的东西(博主是学通信的),布隆过滤器是一种布尔型判断器,可以非常高效的判断一个物品是否在某个列表里。有人说判断一个item是否在一个item列表里,只要将所有item存在数据库,或者做一层缓存存在redis里,再遍历的查一次不就得了?这么做没问题,但是当item量巨大的时候,会出现缓存击穿等问题。布隆过滤器很好地解决了这个问题,接下来会具体...

2020-03-23 22:07:34 380

原创 浅谈百度新一代query-ad 推荐引擎如何提升广告收益率

今天看了一篇论文,是某顶会的被推荐为最值得阅读的论文之一。题目是《MOBIUS: Towards the Next Generation of Query-Ad Matching in Baidu's Sponsored Search》,里面有几个观点挺新颖的,跟大家分享下。首先query-ad指的就是搜一个信息然后展示一个广告,用户点击广告会付费,向百度这样的体量,单纯这样的广告营收转化每天...

2020-03-19 20:51:07 374

原创 关于联邦学习What、How、Who的灵魂三问
原力计划

最近沉迷于学习政治经济学无法自拔,听了很多资本论相关的课程。今天也尝试通过what how who的方式介绍下联邦学习,(感谢这个领域的专家,老同学Dr Liu给我的输入)灵魂三问指的是:1.联邦学习解决了什么问题2.联邦学习怎么解决的问题3.具备什么样条件可以实现联邦学习商业化联邦学习解决了什么问题?联邦学习最早是Google在差不多两年前提出的,当时我还兴奋地发了一...

2020-03-14 22:35:20 592

原创 浅谈“知识蒸馏”技术在机器学习领域的应用

什么是知识蒸馏技术?知识蒸馏技术首次出现是在Hinton几年前的一篇论文《Distilling the Knowledge in a Neural Network》。老大爷这么大岁数了还孜孜不倦的发明各种人工智能领域新名词,让我这种小白有很多可以去学习了解的内容,给个赞。那什么是知识蒸馏技术呢?知识蒸馏技术的前提是将模型看作一个黑盒,数据进入后经过处理得到输出。通常意义上,复杂的模型的输出...

2020-03-05 21:28:44 619

原创 浅谈模型压缩之量化、剪枝、权重共享

之前陆陆续续看了许多模型压缩相关的文章,自己业务中也接触过一些相关的客户,今天周末没事做,把模型压缩相关的内容整理一下做个分享。可能更多地从科普的角度去介绍,因为我也不是专业做这方面技术的研究。首先明确下模型压缩的概念,就是在尽可能不改变模型效果的情况下,减少模型的体积,使得模型在使用的时候有更快的速度。业务视角去看模型压缩的意义模型压缩这个概念貌似是最近两年突然火了起来,究其原...

2020-03-01 13:40:47 1410 1

原创 算法工程师和算法框架开发,谁会代表未来?

算法和算法框架是机器学习非常重要的两个因素,算法就是诸如LR、GBDT、DNN、DeepFM这样的实际解决某个数学问题的公示实现。算法框架指的是计算框架,计算框架可以让算法执行更高效,比如最早玩深度学习的人都用过Theano,基于Theano去开发算法很困难,后来有了PyTorch和TensorFlow,让基于深度学习的算法开发更方便。最近看了很多文章也参加了很多讨论,分享下我的看法。目前看上...

2020-02-07 16:45:06 899

原创 写给用我的“新闻推荐项目”做毕设的同学们

故事的背景是这样滴14年的时候,我还在读研究生,那时候机器学习还算不上是一个重要的计算机学科,如果能顺嘴说一说TF-IDF、Collaborative Filtering这种算法(虽然现在听起来很naive),在当时基本上就是技术潮男一般的存在,在五道口咖啡厅能横着“骗项目”、“骗钱”。我因为当时正好在微创业,当时准备做一个智能猎头的项目,用算法去给每个程序员的能力打分,再把程序员推送给合...

2020-01-28 10:31:03 1057

原创 详解云原生机器学习平台的优势

概述最近看了很多关于云原生的文章,大体意思是机器学习服务这个行业将迎来一次巨大的变革。从13年我刚入行以来,机器学习在15年左右经历了模型深度的变革,从浅层学习逐步发展到了深度学习。到了20年这个节点,机器学习的整体服务架构会开始变革,逐渐会从Apache Yarn体系向Docker+Kubeflow这种云原生体系变革。为什么会出现这种迁移?许多技术同学都在网上发表了他们的看法,我认为比较...

2020-01-22 21:41:13 699

原创 Hash特征编码在推荐系统的应用

本文来之不易,学习hash的起源是我在客户交流现场被问到hash冲突。其实这个是我的知识短板,但是因为我隐约记得有个murmurhash的东西,然后蒙混过去了。然后今天抓紧找各位大牛学习了hash在推荐系统中的作用,总结了这篇笔记。感觉自己还是太文盲了,另外也感谢客户老师以及公司内的大牛老师的指导。01 推荐系统中数据如何转成稀疏数据先来一句话概括下,Hash解决的是一个空间匹配的效...

2020-01-17 17:19:30 3119 1

原创 微软NNI-业内最亲民的AutoML工具学习笔记(1):AutoFeatureENG

01 AutoML概述记得若干年前的某次周会上,我说“AutoML不光是调参,应该包含自动特征工程。”当时得到了大佬们的嘲讽,说我不懂技术瞎说。今天回过头来看AutoML是一个系统化的体系,包含3个要素: 自动特征工程AutoFeatureEng 自动调参AutoTuning 自动神经网络探索NAS 02 NNI概述NNI(NerualNetworkIntel...

2020-01-06 19:29:33 1115 1

原创 马云酒吧揭秘

一直想去马总开的酒吧逛逛,听说已经成了杭州著名景区,之前总是来也匆匆去也匆匆,这次终于要在杭州过周末了,就来看看。门面不是特别大,在接近余杭这边,其实不是特别繁华的地段。本来常规是8点可以入场,今天因为场地一直在办脱口秀,拖延到9点才能入场,也还ok。所以就一直在店里看看马总相关的书,你别说这书还挺好看,是马总的好友描述马总的生活和工作相关的历史,有兴趣的同学强烈推荐,挺有意思的。...

2019-12-22 23:40:06 9960 5

原创 基于外卖评论的舆情风控

业务背景目前许多商家都有线上留言或者评论反馈平台,消费者可以在这些平台上通过留言表达自己对于消费商品的反馈。消费者的反馈包括表扬性的正向反馈,也有一些批评性质的负向反馈。商家需要掌握消费者对于产品的整体舆论取向来判断自己的产品质量是否符合消费者需求,同时了解评论内容可以方便商家分析舆论导向,指导下一步产品研发工作。业务痛点目前许多酒店、餐饮、零售的留言平台每天都有大量的留言产生,传统的...

2019-12-13 15:06:49 845 1

原创 Graph Embedding方案之DeepWalk

​对于算法不太了解的同学,这是一个看上去很没吸引力的标题,预计点击量超不过200。最近非常迷恋一句话“万物皆可Embedding”,讲的是世间所有的事物都能通过某种方法被向量表示,一旦事物被向量表示了就可以通过乘法去做进一步逻辑处理。比如商品A被表示为向量m,商品B被表示为向量n,则m*n的结果就是A和B的相似关系。把事物Embedding的方法有很多,今天就来介绍DeepWalk,一种把图关系向...

2019-11-13 17:39:44 444

原创 从浅入深理解流式计算框架Flink

随着互联网的不断发展,行业内对于数据的处理能力和计算的实时性要求都在不断增加,随之而来的是计算框架的升级。经过了十余年开源社区的不断演进,现在计算框架已经从第一代的雅虎开源的Hadoop体系进化到目前主流的Spark框架,这两套框架的计算主要是从强依赖硬盘存储能力的计算发展到了内存计算,大大增强了计算力。下一代计算引擎,也就是第三代计算引擎,将会从计算实时性的角度突破,也就是今天要讲到的Flink...

2019-11-10 09:44:41 642

原创 李小璐PGONE事件对推荐系统的考验

今天谈下突发热门话题对于推荐系统的考验。内容推荐系统,本质上是一种人物喜好与内容的信息匹配。在大部分情况下,推荐系统可以离线的根据每名用户的历史观看记录以及每个内容的属性训练模型,并且实现推荐。但是,当一个非常热门的话题爆发了,例如李小璐PGONE事件这样整个平台的内容和人们的关注点都会聚焦到一个问题上,究竟会对推荐系统造成哪些影响呢?傲海为您细细道来。架构考验目前市面上绝...

2019-10-30 22:35:42 3129 6

原创 「头条推荐技术解析一」运营和业务模式详解

概述站在产品经理的角度,我始终坚信所有成功的产品一定是业务驱动的,即使是技术驱动的产品也总有一天会走向业务驱动。今天要介绍今日头条的内容推荐技术,首先要先从业务模式来介绍。就拿头条内容跟微信公众号的运营模式做一个比较:1)微信公众号是典型的什么样的人下什么样的菜。做微信公众号首先要有粉丝,要有一个特定领域的受众群体,比如关注“凡人机器学习”这个号的人肯定是对机器学习感兴趣的人。于是文章...

2019-10-27 10:37:27 386

原创 Youtube推荐系统是如何挖掘用户内心另一面的

如何评价一个基于内容的推荐系统的好坏呢?我觉得是在于推荐系统能否逐渐挖掘用户的内心深处,让用户找到自己都觉得美妙的内心另一面。Youtube在这点做得很好,特别是当我打开了18禁开关的那一刻,本来纯洁的我也被推荐系统......01 概述Youtube是本人用过最好的基于内容的推荐系统,今日头条在我心里排第二。今年Youtube在推荐系统大会上RecSys2019上发布了新论文,架构...

2019-10-17 17:44:43 496

原创 【教程】sqlflow实现用sql玩转机器学习

机器学习有很多流程,包含数据预处理、特征工程、模型训练、模型评估和预测。今天所有做机器学习服务的人,无论是云上服务还是开源软件,大家都在尝试通过某种方式将如此灵活的流程串联起来。今天给大家介绍一种方式,适用所有人都了解的SQL语言。sqlflow,一种基于sql语言的机器学习实现方案01 概述sqlflow是一种基于sql的描述语言,用户可以基于sql的方式实现机器学习模型训练和预测...

2019-10-08 19:36:08 1446 2

原创 云栖大会独家报道

1总体感受其实也参加过4次杭州云栖了,总体这次给我的感受是规模上照上一次没有增加,甚至有些减小。今年没有特别酷的室外冲浪,没有巨大的专有云集装箱,没有一排排的机器人,整体风格变的更务实了。里面展示的不是跟实际场景遥不可及的黑科技,更多的是很贴近生活的,甚至就是一个微小的创新的商业模式。把今天看到的有意思的东西给大家分享下,就不响应大家需求发美女图了,虽然现场非常多,欢迎来实地考察!...

2019-09-25 21:36:38 348

原创 机器学习多目标分类模型解法

机器学习被广泛的应用于推荐、风控等场景。经典的机器学习建模数据是由特征列和单一目标列构成的,比如要做广告的CTR预测,其实模型关心的是一个广告曝光后是否会被点击,这是一个单一目标场景的建模过程。但是在实际应用场景中,往往有时候会出现“既要也要”的情况,比如推荐一个视频给客户,推荐引擎不光希望客户可以点击这个视频,更希望客户可以长时间光看,这就成了一个多目标建模的情况。单目标建模在很多情况下是有...

2019-09-18 17:44:58 1586

原创 DeepFM算法详解-推荐算法中的皇冠

概述DeepFM是一种推荐领域炙手可热的算法,在非常多大家熟识的互联网公司都有落地场景。对于DeepFM最佳的阐述一定是来自于它的原始的论文。地址:https://arxiv.org/pdf/1703.04247.pd然后再介绍下推荐算法的本源,推荐其实是一个典型的二分类场景。在推荐算法中需要做的事情无非是把一个商品或者广告推送给一个人,然后预测出来这个人喜欢或者不喜欢。这里最难的...

2019-08-14 22:28:42 1374 1

提示
确定要删除当前文章?
取消 删除