李博Garvin的专栏

阿里云机器学习PD

排序:
默认
按更新时间
按访问量

流式机器学习算法的入门和认知

一些些背景 其实技术总在更新,做这个行业也是一直要走在学习并适应的路上,这也是人工智能领域最吸引我的地方,其实基础的理论是不变的,但是随着业务的发展,计算能力的发展,上层的实现总是在迭代,今天讲下我对于流计算的一些认知。 先聊下计算引擎的进化,随手画了上面的图。其实第一代分布式计算引擎是H...

2018-09-18 09:38:36

阅读数:1018

评论数:0

20行代码实现电影评论情感分析

背景情感分析有很多的应用场景,比如做一个电商网站,卖家需要时刻关心用户对于商品的评论是否是正面的。再比如做一个电影的宣传和策划,电影在键盘侠们中的口碑也至关重要。互联网上关于任何一个事件或物品都有可能产生成千上万的文本评论,如何定义每一个文本的情绪是正面或是负面的,是一个很有挑战的事情。挑战体现在...

2018-03-09 09:33:17

阅读数:4905

评论数:10

用深度学习做球星颜值打分完整案例(一)

已经上传了完整的代码和数据,数据比较少,大家可以帮忙补充。项目地址(记得给个start):https://github.com/jimenbian/face_rank先来说一下项目的背景,这次做的是一个最基础的图像识别案例,通过训练一个模型来给NBA球星的颜值打分,嗯,楼主麦迪、艾弗森球迷。选择N...

2018-01-18 09:32:27

阅读数:1978

评论数:0

深度学习RNN实现股票预测实战(附数据、代码)

背景知识最近再看一些量化交易相关的材料,偶然在网上看到了一个关于用RNN实现股票预测的文章,出于好奇心把文章中介绍的代码在本地跑了一遍,发现可以work。于是就花了两个晚上的时间学习了下代码,顺便把核心的内容翻译成中文分享给大家。 首先讲讲对于股票预测的理解,股票是一种可以轻易用数字表现律动的交易...

2017-12-23 17:01:02

阅读数:14406

评论数:5

为什么要写《机器学习实践应用》这本书

预售地址: https://item.jd.com/12114501.html历经了10个月,《机器学习实践应用》这本书终于面世了。首先呢,因为我的工作比较忙,只能抽一些周末或者是下班以后的时间进行写作,另外书的发布流程是一个漫长的过程。所以当这本书出版的时候,我感到熟悉又陌生,熟悉是因为书中的...

2017-07-03 08:59:56

阅读数:6245

评论数:5

谈谈对搜索技术Elastic Search&Lucene的理解

前言 十一一直陪家人,所以也没时间写文章。最近刚好赶上Elastic Search上市,其实在圈子里还是挺轰动的,因为这个也是少数的靠卖开源软件服务上市的公司。大家都知道ES是做搜索服务的,今天就聊聊我对搜索的认识 从业务属性讲 搜索的话,其实是大家接触最多的一类业务。其实说机器学习,其实是一门技...

2018-10-09 12:24:02

阅读数:140

评论数:0

白话异常检测算法Isolation Forest

前言 好久没讲算法了,今天分享一个异常点检测算法Isolation Forest。之前也是没听说过这个算法,中文名叫孤立森林,听客户讲了就顺便查了下这个算法的论文,感觉还是非常有用滴。 论文地址:http://cs.nju.edu.cn/zhouzh/zhouzh.files/publicatio...

2018-09-29 10:03:32

阅读数:156

评论数:0

机器学习根据文字生成图片教程(附python代码)

背景 其实在过往我们生活的世界里,当人们需要获取信息的时候,更多地强调的是信息的检索和遍历,意味着去已经存在的物品中找到自己合适的。在我看来这是一种很低级的生活形态,比如我的意识中有一个某种图案的杯子,想要它,只能打开淘宝根据标签去找已经设计好的款式有没有相近的,而不能直接根据我的想法自动生成一...

2018-09-05 17:41:48

阅读数:2978

评论数:4

AutoML功能解析

背景介绍 如果你用过机器学习算法,那一定体验被算法调参支配的恐怖。面对错综复杂的算法参数,算法使用者们往往要花费无尽的黑夜去不断尝试,犹如大海捞针。有的时候加班到深夜,终于找到了一个靠谱的参数组合,然而找到的参数组合真的是最优的么?天知道。 然而在搭建机器学习链路的过程中,往往不止调参...

2018-08-31 19:41:10

阅读数:282

评论数:0

贝叶斯超参优化方法

数学是个奇妙的东西,可以把生活中的一切量化。人生也是个奇妙的东西,起起伏伏,好比一个高斯分布函数。今天就结合一些人生的感悟聊聊贝叶斯超参优化 一些些背景 很多算法工程师戏谑自己是调参工程师,因为他们需要在繁杂的算法参数中找到最优的组合,往往在调参的过程中痛苦而漫长的度过一天。如果有一种方式...

2018-08-21 13:51:57

阅读数:3532

评论数:5

由《我不是药神》到互联网行业从业保障

一.影评 关于电影本身的内容就不剧透了,总体来看还是一部相当推荐的电影。影片讲的是一个比较敏感的话题,是关乎民生的,个人觉得比战狼这种政治剧要有价值的多。电影本身,无论是从票房考虑,还是从为了过审的角度来说,带有一定的偏向性,偏向的是患病的弱势群体,个人觉得这一点到无可厚非。相信导演是想传递...

2018-07-08 15:16:53

阅读数:408

评论数:0

十行Python代码搞定图片中的物体检测

“Word is useless, show me the pic” -MR Lu 先看下原图: 图片表述的是一男一女在散步,后面有一辆车,现在来看下我们通过十行代码实现的效果: 我们可以看到,在这幅图中其实有三个“person”被识别出来,包...

2018-07-08 15:14:33

阅读数:6998

评论数:21

网红女神是怎么诞生的-深度学习图像分割技术

这个技术能干啥 咋一说图像分割技术,或者更专业一点的叫法“图像语意分析”技术有哪些用途。大家可能还不一定能马上想出来,其实这个东西正在影响着我们的生活。我也是短视频软件的中毒用户,上面有特别多的美女网红,甚至发现过高中同学长得一般的妹子也成了网红女神。这一切的原因是什么的?就是短视频软件可以很好...

2018-06-07 16:17:24

阅读数:455

评论数:0

图像拐点检测-原理以及代码实现

今天带来的内容只用两个字形容-干货!!首先我们科普下图像识别的常识,图片在电脑看来,其实就是一个矩阵,每个矩阵中的一个值都对应图片的一个像素点。(下图摘自《机器学习实践应用》)图片中其实是有很多的边以及拐角的,今天要介绍的就是如何通过算法找到图片拐角。  原理其实找到拐角,很简单,就是在图片矩阵中...

2018-04-18 19:49:08

阅读数:2550

评论数:3

5行python代码讲清楚如何在区块链挖矿

之前发了好几篇讲区块链的,还有同学说不懂,今天我就试试用最少的话讲明白挖矿,背景知识可以参考下我之前发的内容。 先说下哈希是啥,哈希就是每个东西的唯一标识,比如x的哈希:hash(x)=ga8e9hea7h8ae89h78aeh9r 区块链就是一个一个区块,每个区块是一个哈希 挖矿就是已知...

2018-03-28 11:48:07

阅读数:1004

评论数:0

五句话了解区块链,扫盲系列

1.区块链解决了啥问题一个东西有价值,一定是解决了一个社会上的痛点。我们说人工智能是未来的趋势,因为它主要解决的是生产力的升级问题,工业革命代替人的简单体力劳动,人工智能代替的是例如思考之类的复杂劳动。区块链解决的是生产关系的问题,也就是信任的问题,想一下为什么淘宝需要有支付宝,因为如果没拿到货而...

2018-03-22 09:16:56

阅读数:7766

评论数:20

浅谈文本词向量转换的机制embedding

首先感谢大家对上一篇文章的关注吧,建议看这篇文章前先看下上一篇我推送的《20行代码实现电影评论情感分析》,上篇文章其实留了个坑,不过不一定坑到大家,因为可能90%的同学可能不会去认真读一遍代码,或者去跑一下程序。上文说道关于文本词向量转换的embedding相关的内容,其实是没有详细说明的,那这一...

2018-03-12 18:37:52

阅读数:1037

评论数:0

聊聊互联网实习相关的事儿

过年回来啦,其实之前答应了群里的同学分享一下关于实习的一些事情,跳票到了今天,实在不好意思。其实找实习这个事情就有点像我们考试做题目,需要分两方面看,一方面需要去想为什么老师出这道题,第二方面去想我要怎么解才是对的。先来扯扯为啥公司会招聘实习生,无外乎两种可能性:以部分外企或者小创业公司为主,有很...

2018-02-22 11:53:32

阅读数:567

评论数:0

[特征工程系列三]显性特征的衍生

前一文讲的是一些特征的基础处理方式,包括怎么降维、怎么处理脏数据等等。其实特征工程真正的难点是如何结合业务需求衍生出新的特征。结合业务需求讲的是利用专家经验来提取出数据里对结果影响更大的特征,往往是原有数据字段通过加减乘除等操作生成新的字段,这些字段在结合一些线性算法做训练的时候往往能起到提升模型...

2018-02-11 17:38:30

阅读数:879

评论数:0

[特征工程系列二]显性特征的基本处理方法

今天接着前一篇文章讲,主要分享基于显性特征工程的一些最基本的处理方法。关于显性特征是什么,大家可以去看系列文章一。关于显性特征的处理方法可以做这样的类比:不知道大家平时会不会自己做菜,我个人的话基本每周都会做。我们从菜市场买的菜,不经过处理是不能下锅的,因为需要清洗、摘取烂的叶子、切段等操作后才可...

2018-02-11 17:36:45

阅读数:441

评论数:0

提示
确定要删除当前文章?
取消 删除