【转载】图自编码器的起源和应用

36 篇文章 24 订阅

本文转自:https://mp.weixin.qq.com/s/oc-o6W087jA-npxy89QMFw

©PaperWeekly 原创 · 作者|刘昊东

学校|电子科技大学硕士生

研究方向|推荐系统,表示学习

Kipf 与 Welling 16 年发表的「Variational Graph Auto-Encoders」提出了基于图的(变分)自编码器 Variational Graph Auto-Encoder(VGAE),自此开始,图自编码器凭借其简洁的 encoder-decoder 结构和高效的 encode 能力,在很多领域都派上了用场。

本文将先详尽分析最早提出图自编码器的「Variational Graph Auto-Encoders」这篇论文,将从以下几个角度进行分析:

  • VGAE 的思想 

  • 没有变分阶段的 GAE 的 encoder、decoder 阶段 

  • 有变分阶段的 VGAE 

  • 如何从确定分布再到从分布中采样 

  • 实验效果分析

然后会再介绍两篇关于如何应用图自编码器的文章。


1 Variational Graph Auto-Encoders

论文标题:Variational Graph Auto-Encoders

论文来源:NIPS 2016

论文链接:https://arxiv.org/abs/1611.07308

 

1.1 论文概览

先简单描述一下图自编码器的 intention 和用途:获取合适的 embedding 来表示图中的节点不是容易的事,而如果能找到合适的 embedding,就能将它们用在其他任务中。VGAE 通过 encoder-decoder 的结构可以获取到图中节点的 embedding,来支持接下来的任务,如链接预测等。

VGAE 的思想和变分自编码器(VAE)很像:利用隐变量(latent variables),让模型学习出一些分布(distribution),再从这些分布中采样得到 latent representations(或者说 embedding),这个过程是 encode 阶段

然后再利用得到的 latent representations 重构(reconstruct)出原始的图,这个过程是 decode 阶段。只不过,VGAE 的 encoder 使用了 GCN,decoder 是简单的内积(inner product)形式。

下面具体讲解变分图自编码器(VGAE)。先讲 GAE,即图自编码器(没有变分)。

 

1.2 图自编码器(GAE)

统一规范,规定几个 notation 如下:

 

1.2.1 Encoder

GAE 使用 GCN 作为 encoder,来得到节点的 latent representations(或者说 embedding),这个过程可用一行简短的公式表达:

将 GCN 视为一个函数,然后将X和A作为输入,输入到 GCN 这个函数中,输出Z \in R^{N\times f},Z代表的就是所有节点的 latent representations,或者说 embedding。

如何定义 GCN 这个函数?kipf 在论文中定义如下

其中W_0W_1是待学习的参数。

简言之,这里 GCN 就相当于一个以节点特征和邻接矩阵为输入、以节点 embedding 为输出的函数,目的只是为了得到 embedding

 

1.2.2 Decoder

GAE 采用 inner-product 作为 decoder 来重构(reconstruct)原始的图

上式中,就是重构(reconstruct)出来的邻接矩阵。

 

1.2.3 How to learn

一个好的 Z,就应该使重构出的邻接矩阵与原始的邻接矩阵尽可能的相似,因为邻接矩阵决定了图的结构。因此,GAE 在训练过程中,采用交叉熵作为损失函数:

上式中,y代表邻接矩阵A中某个元素的值(0 或 1),代表重构的邻接矩阵中相应元素的值(0 到 1 之间)。

从损失函数可以看出来,希望重构的邻接矩阵(或者说重构的图),与原始的邻接矩阵(或者说原始的图)越接近、越相似越好。

 

1.2.4 小结

图自编码器(GAE)的原理简明、清晰,训练起来不麻烦,因为可训练的参数只有W_0W_1,kipf 的代码实现中,这两个参数矩阵的维度分别是d\times 3232\times 16,如果d=1000,也只有 32512 个参数,相当少了。

下面是 VGAE(变分图自编码器)。

 

1.3 变分图自编码器(VGAE)

在 GAE 中,一旦 GCN 中的W_0W_1确定了,那么 GCN 就是一个确定的函数,给定XA,输出的Z就是确定的

在 VGAE 中,Z不再由一个确定的函数得到,而是从一个(多维)高斯分布中采样得到,说得更明确些,就是先通过 GCN 确定一个(多维)高斯分布,再从这个分布中采样得到Z。下面简单描述一下这个过程。

 

1.3.1 确定均值和方差

高斯分布可以唯一地由二阶矩确定。因此,想要确定一个高斯分布,只需要知道均值和方差。VGAE 利用 GCN 来分别计算均值和方差

这里有两个要注意的地方,第一个是 GCN 的下标,GCN_\muGCN_\sigma中的W_0是相同的、共享的,但W_1是不同的,因此用下标来作区分;第二个是通过GCN_\sigma得到的是log\sigma,这样可以方便后续的计算。

 

1.3.2 采样

既然已经得到了均值和方差(准确来说应该是均值向量和协方差矩阵),就可以通过采样得到Z了,但是,采样操作无法提供梯度信息,也就是说,反向传播在采样操作无法计算梯度,也就无法更新W_0W_1。解决办法是重参数化(reparameterization)

简单说一下重参数化。如果\epsilon 服从N(0,1),那么z=\mu +\epsilon \sigma就服从N(\mu ,\sigma ^2)。因此,可以先从标准高斯中采样一个\epsilon,再通过\mu +\epsilon \sigma计算出z,这样一来,z的表达式清晰可见,梯度信息也就有了。

VGAE 的 decoder 也是一个简单的 inner-product,与 GAE 的 decoder 没有区别。

 

1.3.3 How to learn

VGAE 依然希望重构出的图和原始的图尽可能相似,除此之外,还希望GCN计算出的分布与标准高斯尽可能相似。因此损失函数由交叉熵和 KL 散度两部分构成

其中, 是q(Z|X,A)GCN 计算出的分布,p(Z)是标准高斯。

不过,论文中的优化目标是这样的:

这是用变分下界写出的优化目标,第一项是期望,第二项是 KL 散度。

 

1.4 效果分析

Kipf 和 Welling 在三个数据集上进行了效果分析,任务是链接预测,详情见下表:

可见,(变分)图自编码器在三个数据集上的效果都很好,不过,注意带星号的 GAE* 和 VGAE*,这两个模型是不带 input features 的,就是说节点的 features 就是 one-hot 向量,这种情况下,(变分)图自编码器的效果不仅不比 SC 和 DW 好,甚至还有点差

不过,Kipf 和 Welling 在论文中指出,SC 和 DW 不支持 input features,因此能够使用 input features 是 VGAE 的特点之一。

以上是对图自编码器的开山论文 Variational Graph Auto-Encoders 的介绍,接下来看看图自编码器在最近两年的一些应用。


2 Graph Convolution Matrix Completion

论文标题:Graph Convolution Matrix Completion

论文来源:KDD 2018

论文链接:https://www.kdd.org/kdd2018/files/deep-learning-day/DLDay18_paper_32.pdf

 

2.1 论文概览

这是 Kipf 作为二作的一篇解决推荐系统中 matrix completion 问题的文章,发表在 18 年的 KDD。

这篇文章提出,matrix completion 任务可以视作为 graph 上的链接预测问题,即 users 和 items 构成了一张二部图,图上的边代表相应的 user 与 item 进行了交互,于是 matrix completion 问题就变成了预测这张二部图上的边的问题。

为了解决 users-items 二部图上的链接预测问题,这篇文章提出了基于在二部图上进行 message passing 的图自编码器框架 GCMC,且引入了 side information,还分析了 side information 对于推荐系统中冷启动的影响。

 

2.2 模型详解

先简要分析一下 GCMC 的整体框架。首先,GCMC 把 users 和 items 的初始 features x^ux^v(one-hot 向量)输入到一个 GCN 层中,得到 users 和 items 的 hidden representations:h^uh^v,再将 users 和 items 的 side information x^{u,f}x^{v,f}输入到一个 Dense 层中,得到 side information 的 hidden representations: f^u,f^v 。

然后将初始 features 和 side information 的 hidden representations 一起输入到一个 Dense 层中,得到 users 和 items 最终的 embeddings: z^u,z^v(以上为 encoder 阶段),最后通过计算内积(decoder 阶段),预测 user 对 item 的喜好程度。

下面给出每一步的详细计算方法。

首先,GCN 层的计算方式如下:

其中, \mu _{j\rightarrow i,r}是 item j 传递给 user i 的信息,下标 r 指定了 user i 给 item j 的评分是 r(由于用户的评分类别不止一种,因此使用不同的 r 来区分,即 r\in {\{1,...,R\}})。

W_r 是参数矩阵,c_{ij}是归一化因子,可以是 |N_{u_i}| 或者 其中|N_{u_i}|表示 user i 的邻居数。accum 也有两种选择:stack 或者 sum。 \sigma表示激活函数,可以是 sigmoid、ReLU 等。

得到了 user i 的初始 feature 的 hidden representation h^u_i 后,再将 side information 的 hidden representation h^u_i与  一起输入进一个 Dense 层即可得到 user i 的最终 embedding:

其中,右式表示得到 side information 的 hidden representation 的 Dense 层,左式表示得到最终 embedding 的 Dense 层。

在得到 users 和 items 的 embeddings 后,通过下式来预测 user i 对 item j 的评分属于 r 的概率:

最终,GCMC 对 user i 对 item j 的评分的预测为:

 

2.3 效果分析

作者使用了 6 个数据集,可以分为 3 类:

  • 对比的方法只利用 users 或 items 一方的 features:ml-100k

  • GCMC 和 对比的方法都不使用 side information:ml-1m,ml-10m

  • Users 和 items 的 side information 以 graph 的形式呈现:Flixster,Douban,YahooMusic

实验结果:

实验结果表明,在有 side information 时,GCMC 的效果好于其他方法,尤其是当 side information 以 graph 的形式存在时,GCMC 的效果优势更加明显。而当没有 side information 时,GCMC 也表现出了 competitive results。

作者还分析了 side information 对冷启动的影响,文中以 ml-100k 为例,将一些用户的评分数量人为减少,然后对比了 GCMC 分别在使用和不使用 side information 时的效果。

从上图可以看出,使用 side information 的 GCMC 效果更好,而且随着冷启动用户的人数增多,引入 side information 带来的效果提升更加明显。

 

2.4 小结

该篇论文将推荐系统中的 matrix completion 任务视作 graph 上的链接预测任务来处理,并使用图自编码器,引入 side information,在一些 benchmark 数据集上超过了一些 SOTA 方法,而且还分析了 side information 给冷启动带来的帮助。


3 GraphCAR

论文标题:GraphCAR: Content-aware Multimedia Recommendation with Graph Autoencoder

论文来源:SIGIR 2018

论文链接:https://dl.acm.org/doi/10.1145/3209978.3210117

 

3.1 论文概览

上一篇论文中,GCMC 的目标是解决 matrix completion 问题,即预测 user 对 item 的评分是多少。这篇文章要解决的问题可以归类为推荐系统中 top-n 推荐问题,即给用户推荐 n 个 ta 可能最感兴趣的 items。

这篇文章指出,用户在选择图片或者视频时,图片或视频本身的 multimedia content 是最重要的因素,但已有的一些方法没能对 multimedia content 给予足够的重视,

因此,基于 GAE 的思想,该文章提出了 GraphCAR 模型,除了 users 和 items 之间的交互数据,该模型还利用了 users 的 attributes 和 items 的 multimedia content。

 

3.2 模型详解

GraphCAR 的整体框架基本遵循着 GAE 的框架,即先使用 GCN 获取 users 和 items 的 embeddings,然后使用内积来预测 user 对 item 的偏好评分。

首先,在 GCN 阶段(即 encoder 阶段),为了获取 users 的 embedding,GCN 使用 user-item 的交互矩阵 R 和 users 的 attributes 矩阵 I 作为输入,然后输出 users 的 embeddings 矩阵 U

其中P_0, P_1是参数矩阵。对于 items 的 embeddings,只需要将 users attributes 矩阵换成 items 的 feature 矩阵 X 即可( X即为 multimedia content):

得到 embeddings 之后,便可利用内积形式的 decoder 计算出预测的 preferences: 

由于 GraphCAR 要解决的是 top-n 推荐问题,因此目标函数选择了 BPR pairwise 目标,即:

和 GCMC 的不同之处在于,GraphCAR 直接对 users 和 items 的 interactions 和 side information 一起建模,而不是像 GCMC 中那样,先分别得到初始 features(one-hot 向量)和 side information 的 hidden representations,然后再得到最终的 embeddings。

对比下来,GraphCAR 的方式更直接,但貌似这种方法只能在有 users 和 items 的 side information 的情况下才能生效。

 

3.3 效果分析

论文在 Amazon 和 Vine 两个数据集上进行了实验,其中 Amazon 提供了 image features,Vine 提供了 video features。实验结果如下:

另外,作者还分析了 users 交互过的 items 的数量对 GraphCAR 的影响:

从图中可以看出,GraphCAR 对于交互数量较少的 users 的效果优势并不明显,而当 users 的交互数量增多时,效果优势开始慢慢明显起来。

 

3.4 小结

这篇论文要解决的问题是推荐系统中 top-n 推荐的问题,在分析发现以往的方法并没有充分利用 items 本身的 multimedia content 后,该论文采取了直接用 GCN 对 user-item interactions 和 side information 建模的方式来得到 embeddings,随之而来的问题是,如果不存在 users attributes 或 items multimedia content 可利用,GraphCAR 可能需要改变一些处理的方式。


4 总结

图自编码器最开始是以变分图自编码器的形式提出的,但近两年基本上都应用的是没有变分阶段的图自编码器。

GAE 的形式很简洁,首先通过 GCN 得到图中节点的 embeddings(encoder 阶段),然后再根据具体任务重构出原始的图的特点(decoder 阶段)。

从以上三篇文章可以看出,decoder 阶段都采取的是两层 GCN 结构,而 decoder 阶段都采取的是 inner-product 结构,可以看出,也许结构上还有改进的空间,而不是仅限于两层 GCN 或者简单的内积形式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值