/ 今日科技快讯 /
近日,在对2021年漏洞奖励计划进行的年度审查中,搜索巨头谷歌宣布,该公司去年共向安全研究人员发放了超过870万美元悬赏,以奖励他们谷歌产品中报告的数千个漏洞。
这个数字高于谷歌在2020年支付给安全研究人员的670万美元赏金。其中,300万美元针对安卓漏洞,330万美元针对Chrome浏览器漏洞,50万美元针对Google Play Store漏洞,31万美元针对Google Cloud漏洞。
/ 作者简介 /
本篇文章来自老司机奔波儿灞取经的投稿,文章主要分享了他对LeakCanary源码的分析,相信会对大家有所帮助!同时也感谢作者贡献的精彩文章。
奔波儿灞取经的博客地址:
https://juejin.cn/user/1407028359070766
/ 知识准备 /
Java四大引用
强引用:绝不回收
软引用:内存不足才回收
弱引用:碰到就回收
虚引用:等价于没有引用,只是用来标识下指向的对象是否被回收。
弱引用的使用
我们可以为弱引用指定一个引用队列,当弱引用指向的对象被回收时,此弱引用就会被添加到这个队列中,我们可以通过判断这个队列中有没有这个弱引用,来判断该弱引用指向的对象是否被回收了。
// 创建一个引用队列
ReferenceQueue<Object> queue = new ReferenceQueue<>();
private void test() {
// 创建一个对象
Object obj = new Object();
// 创建一个弱引用,并指向这个对象,并且将引用队列传递给弱引用
WeakReference<Object> reference = new WeakReference(obj, queue);
// 打印出这个弱引用,为了跟gc之后queue里面的对比证明是同一个
System.out.println("这个弱引用是:" + reference);
// gc一次看看(毛用都没)
System.gc();
// 打印队列(应该是空)
printlnQueue("before");
// 先设置obj为null,obj可以被回收了
obj = null;
// 再进行gc,此时obj应该被回收了,那么queue里面应该有这个弱引用了
System.gc();
// 再打印队列
printlnQueue("after");
}
private void printlnQueue(String tag) {
System.out.print(tag);
Object obj;
// 循环打印引用队列
while ((obj = queue.poll()) != null) {
System.out.println(": " + obj);
}
System.out.println();
}
打印结果如下所示:
这个弱引用是:java.lang.ref.WeakReference@6e0be858
before
after: java.lang.ref.WeakReference@6e0be858
通过上述代码,我们看到,当obj不为null时,进行gc,发现queue里面什么都没有;然后将obj置为null之后,再次进行gc,发现queue里面有这个弱引用了,这就说明obj已经被回收了,大家可以自己在idea的Run/Debug Configuration选择Add Vm Options来打印gc日志验证,这里不再废话。
利用这个特性,我们就可以检测Activity 的内存泄漏,众所周知,Activity在onDestroy()之后被销毁,那么我们如果利用弱引用来指向Activity,并为它指定一个引用队列,然后在onDestroy()之后,去查看引用队列里是否有该Activity对应的弱引用,就能确定该Activity是否被回收了。
那么,怎么在onDestroy()之后呢,用Application的registerActivityLifecycleCallbacks()这个api,就可以检测所有Activity 的生命周期,然后在onActivityDestroyed(activity)这个方法里去检测此activity对应的弱引用是否被放入引用队列,如果被放入,说明此activity已经被回收了,否则说明此activity发生了泄漏,此时就可以将相关信息打印出来。
但是,这里有一点要注意,activity 的onDestroy()被调用了,只是说明该activity被销毁了,并不是说已经发生了gc,所以,必要的时候,我们需要手动调用下gc,来保证我们的内存泄漏检测逻辑一定是执行在gc之后,这样才能防止误报。
那么,什么才是必要的时候呢?其实Leakcanary已经给我们写好了,我们直接看它的代码就行。
/ LeakCanary的工作原理 /
此文针对的是1.5.4版本的。
我们先将LeanCanary集成到我们的项目中,步骤如下:
1. 在gradle中添加依赖
debugCompile 'com.squareup.leakcanary:leakcanary-android:1.5.4'
2. 在MainaApplication中进行初始化
LeakCanary.install(this);
经过上述两步,我们就在项目中集成了LeakCanary,我们来看它的工作原理。我们跟着主线代码install():
public static RefWatcher install(Application application) {
return refWatcher(application) // 创建对象
.listenerServiceClass(DisplayLeakService.class) // 用来分析并展示泄漏数据的
.excludedRefs(AndroidExcludedRefs.createAppDefaults().build()) // 排除不需要分析的引用
.buildAndInstall(); // 主线逻辑
}
refWatcher(application)只是创建了一个对象,然后保存了参数application,如下:
public static AndroidRefWatcherBuilder refWatcher(Context context) {
return new AndroidRefWatcherBuilder(context);
}
AndroidRefWatcherBuilder(Context context) {
// 这里保存了context
this.context = context.getApplicationContext();
}
我们直接跟随主线代码buildAndInstall()。
public RefWatcher buildAndInstall() {
RefWatcher refWatcher = build(); // 支线代码: 创建对象,并且创建了日志分析器、gc触发器、堆转储器等。
if (refWatcher != DISABLED) {
LeakCanary.enableDisplayLeakActivity(context);
// 主线代码: 把context取出来转换为Application
ActivityRefWatcher.install((Application) context, refWatcher);
}
return refWatcher;
}
跟随主线代码ActivityRefWatcher.install(),以下代码位于ActivityRefWatcher中 。
public static void install(Application application, RefWatcher refWatcher) {
new ActivityRefWatcher(application, refWatcher).watchActivities();
}
// 只是保存了变量
public ActivityRefWatcher(Application application, RefWatcher refWatcher) {
this.application = checkNotNull(application, "application");
this.refWatcher = checkNotNull(refWatcher, "refWatcher");
}
// 观测所有的Activity
public void watchActivities() {
// 先停止上次的观测,防止重复观测
stopWatchingActivities();
// 直接观测所有的Activity
application.registerActivityLifecycleCallbacks(lifecycleCallbacks);
}
// 移除对Activity的观测
public void stopWatchingActivities() {
application.unregisterActivityLifecycleCallbacks(lifecycleCallbacks);
}
// Activity的生命周期观测器
private final Application.ActivityLifecycleCallbacks lifecycleCallbacks =
new Application.ActivityLifecycleCallbacks() {
//...省略无用代码
@Override public void onActivityDestroyed(Activity activity) {
// 当Activity被销毁,就检测是否被回收
ActivityRefWatcher.this.onActivityDestroyed(activity);
}
};
// 检测activity是否被回收
void onActivityDestroyed(Activity activity) {
refWatcher.watch(activity);
}
现在又回到了RefWatcher。
// 参数是被销毁的Activity
public void watch(Object watchedReference) {
watch(watchedReference, "");
}
public void watch(Object watchedReference, String referenceName) {
if (this == DISABLED) {
return;
}
checkNotNull(watchedReference, "watchedReference");
checkNotNull(referenceName, "referenceName");
// 记录当前时间
final long watchStartNanoTime = System.nanoTime();
// 为Activity生成一个对应的key
String key = UUID.randomUUID().toString();
// 将这个Activity对应的key添加到集合retainedKeys中
retainedKeys.add(key);
// 核心代码,创建一个弱引用,指向这个Activity并且指定一个引用队列
final KeyedWeakReference reference = new KeyedWeakReference(watchedReference, key, referenceName, queue);
// 主线代码
ensureGoneAsync(watchStartNanoTime, reference);
}
KeyedWeakReference就是一个弱引用。
final class KeyedWeakReference extends WeakReference<Object> {
public final String key;
public final String name;
KeyedWeakReference(Object referent, String key, String name, ReferenceQueue<Object> referenceQueue) {
super(checkNotNull(referent, "referent"), checkNotNull(referenceQueue, "referenceQueue"));
this.key = checkNotNull(key, "key");
this.name = checkNotNull(name, "name");
}
}
紧跟主线代码ensureGoneAsync。
private void ensureGoneAsync(final long watchStartNanoTime, final KeyedWeakReference reference) {
// 支线代码: watchExecutor的实现是AndroidWatchExecutor,后面有分析
watchExecutor.execute(new Retryable() {
@Override public Retryable.Result run() {
// 检测Activity是否被回收
return ensureGone(reference, watchStartNanoTime);
}
});
}
// 核心代码
Retryable.Result ensureGone(final KeyedWeakReference reference, final long watchStartNanoTime) {
// 计算时间差提示给开发
long gcStartNanoTime = System.nanoTime();
long watchDurationMs = NANOSECONDS.toMillis(gcStartNanoTime - watchStartNanoTime);
// 尝试移除已经被回收的Activity对应的key(因为代码跑到这里可能已经gc过了)
removeWeaklyReachableReferences();
// 检测Activity是否已经被回收(key被移除了就是被回收了)
if (gone(reference)) {
return DONE;
}
// 如果没有被回收,尝试进行一次gc(这就是我们上面说的必要的时候,后面有细讲)
gcTrigger.runGc();
// gc之后再进行一次移除
removeWeaklyReachableReferences();
// 如果Activity还没有被回收,说明发生了泄漏
if (!gone(reference)) {
long startDumpHeap = System.nanoTime();
long gcDurationMs = NANOSECONDS.toMillis(startDumpHeap - gcStartNanoTime);
// 抓取堆信息并生成文件
File heapDumpFile = heapDumper.dumpHeap();
if (heapDumpFile == RETRY_LATER) {
return RETRY;
}
long heapDumpDurationMs = NANOSECONDS.toMillis(System.nanoTime() - startDumpHeap);
// 对泄漏结果进行分析并通知给相应的服务,然后就会弹出一个通知告诉我们发生了泄漏
heapdumpListener.analyze(
new HeapDump(heapDumpFile, reference.key, reference.name, excludedRefs, watchDurationMs,
gcDurationMs, heapDumpDurationMs));
}
return DONE;
}
// 检测Activity是否已经被回收,只要Activity对应的key不在了,就说明已经回收了
private boolean gone(KeyedWeakReference reference) {
return !retainedKeys.contains(reference.key);
}
// 移除所有已经被回收的对象,被回收了就移除activity对应的key
private void removeWeaklyReachableReferences() {
KeyedWeakReference ref;
// 遍历引用队列,同时移除该弱引用指向的Activity的key
while ((ref = (KeyedWeakReference) queue.poll()) != null) {
retainedKeys.remove(ref.key);
}
}
可以看到,首先,我们将检测的代码逻辑丢到watchExecutor来执行(watchExecutor其实是个AndroidWatchExecutor,用来切换线程),当我们的检测逻辑运行时,大概率已经发生过gc了(这是watchExecutor的功劳),所以我们尝试去清除一次activity的key队列,然后检测被destroy的activity是否已经被回收,如果没有被回收,也不一定发生了泄漏,因为可能还没有进行过gc,所以我们手动进行了一次gc,然后再次检测该activity 对应的key是否还在key队列,如果还在,那么就说明发生了泄漏,就直接dump堆空间以及相关信息,并提示给开发者。
还记得我们前面为Activity生成的key吗,当这个Activity被回收后,指向它的弱引用就会被放入引用队列queue中,所以当我们检测到queue中有这个引用时,就说明该Activity已经被回收了,就从retainedKeys队列移除这个key。所以,当一个Activity被destroy之后,就先把它对应的key添加到retainedKeys队列中,等到gc之后,再检测retainedKeys这个队列,如果对应的key还在,就说明发生了内存泄漏。
这里有个问题,为什么gc可能发生,也可能没发生,能精确的判断是否发生过gc吗?
不能!
很简单, 我们知道,Android的Gc是通过GcIdler实现的,它是一个IdleHandler。
final class GcIdler implements MessageQueue.IdleHandler {
@Override
public final boolean queueIdle() {
doGcIfNeeded();
purgePendingResources();
return false;
}
}
系统在空闲的时候先向ActivityThread投递一个标记为GC_WHEN_IDLE的Message,然后调用:
Looper.myQueue().addIdleHandler(mGcIdler)
来触发Gc,说白了就是: Android的Gc过程是通过空闲消息实现的,优先级是很低。
那么,系统什么时候空闲呢?
当MainLooper中没有消息执行时,就是空闲的,此时就会执行mIdleHandlers里面的内容,gc才会得到执行。
根据前面分析,我们的检测逻辑要放在gc之后,才能保证正确性,那就需要在mIdleHandlers执行之后了,但是,系统并没有提供比mIdleHandlers优先级更低的工具,所以,我们也只能将我们的检测逻辑也放到mIdleHandlers中去碰碰运气了,万一跑在了gc之后就省事了,万一没跑到gc之后呢?后面再说。
AndroidWatchExecutor就是做这件事的。
AndroidWatchExecutor
前面分析主线代码的时候,我们将检测逻辑放在了watchExecutor.execute()中来执行,这里就来跟一下这个支线逻辑:
// 主线逻辑的入口代码。
// 检测并切换到Main线程去执行,为什么必须在Main线程?
@Override
public void execute(Retryable retryable) {
if (Looper.getMainLooper().getThread() == Thread.currentThread()) {
waitForIdle(retryable, 0);
} else {
postWaitForIdle(retryable, 0);
}
}
void postWaitForIdle(final Retryable retryable, final int failedAttempts) {
// mainHandler是Main线程的
mainHandler.post(new Runnable() {
@Override public void run() {
waitForIdle(retryable, failedAttempts);
}
});
}
// 这里直接通过addIdleHandler来投递一个空闲消息
void waitForIdle(final Retryable retryable, final int failedAttempts) {
// 因为这里需要在Main线程中
Looper.myQueue().addIdleHandler(new MessageQueue.IdleHandler() {
@Override public boolean queueIdle() {
// 投递到工作线程中去检测是否发生了泄漏
postToBackgroundWithDelay(retryable, failedAttempts);
return false;
}
});
}
// 投递到工作线程中去检测
void postToBackgroundWithDelay(final Retryable retryable, final int failedAttempts) {
long exponentialBackoffFactor = (long) Math.min(Math.pow(2, failedAttempts), maxBackoffFactor);
long delayMillis = initialDelayMillis * exponentialBackoffFactor;
// 这个handler是通过HandlerThread创建的
backgroundHandler.postDelayed(new Runnable() {
@Override public void run() {
// 这里触发了回调
Retryable.Result result = retryable.run();
// 重试逻辑,可忽略
if (result == RETRY) {
postWaitForIdle(retryable, failedAttempts + 1);
}
}
}, delayMillis);
}
上面的逻辑很简单,第一就是切换到Main线程,因为系统空闲指的是Main线程的Looper没有消息要处理,所以我们要放在Main线程中;第二就是将我们的代码通过IdleHandler来执行,从而来碰碰运气,看能不能跑在gc之后。
接上面的问题:万一没跑到gc之后呢?
那就要走兜底逻辑了:手动再进行一次gc!就像上面代码中的gcTrigger.runGc();一样。这里有人说了,这么麻烦,你直接手动gc一下不就行了,干嘛这么费劲。
这是不对的,因为每次gc都会停止所有线程,这样会造成app卡顿。而且,如果刚刚发生过gc,我们又手动调用了一次gc,这样两次gc的时间堆叠起来,卡顿会更明显,这是不友好的。所以,我们在祈祷检测逻辑发生在系统gc之后外,再加上手动gc的兜底逻辑,才是正确的解决方案。
手动gc的逻辑也很简单,是借助于GcTrigger实现的。
GcTrigger
public interface GcTrigger {
// 提供了一个默认实现,如果不手动指定,默认使用的就是这个
GcTrigger DEFAULT = new GcTrigger() {
// 主线逻辑的入口代码
public void runGc() {
// 先进行gc
Runtime.getRuntime().gc();
// 等待弱引用入队(activity回收后就会入队)
this.enqueueReferences();
// 触发Object的finalize()方法
System.runFinalization();
}
// 这里直接休眠100ms等待gc完成和弱引用入队(简单粗暴)
private void enqueueReferences() {
try {
Thread.sleep(100L);
} catch (InterruptedException var2) {
throw new AssertionError();
}
}
};
void runGc();
}
那么,我们为什么不用软引用呢,软引用也可以做到相同的事情啊。
因为软引用是内存不足才回收,内存足够就不回收,而我们要检测的是内存是否泄露,而不是内存是否足够。
假如现在发生了泄漏,但是内存还足够,软引用就检测不出来了,所以我们要用弱引用,碰到就回收。
/ 总结 /
精简流程如下所示:
1. LeakCanary.install(application);此时使用application进行registerActivityLifecycleCallbacks,从而来监听Activity的何时被destroy。
2. 在onActivityDestroyed(Activity activity)的回调中,去检测Activity是否被回收,检测方式如以下步骤。
3. 使用一个弱引用WeakReference指向这个activity,并且给这个弱引用指定一个引用队列queue,同时创建一个key来标识该activity。
4. 然后将检测的方法ensureGone()投递到空闲消息队列。
5. 当空闲消息执行的时候,去检测queue里面是否存在刚刚的弱引用,如果存在,则说明此activity已经被回收,就移除对应的key,没有内存泄漏发生。
6. 如果queue里不存在刚刚的弱引用,则手动进行一次gc。
7. gc之后再次检测queue里面是否存在刚刚的弱引用,如果不存在,则说明此activity还没有被回收,此时已经发生了内存泄漏,直接dump堆栈信息并打印日志,否则没有发生内存泄漏,流程结束。
关键问题
1. 为什么要放入空闲消息里面去执行?
因为gc就是发生在系统空闲的时候的,所以当空闲消息被执行的时候,大概率已经执行过一次gc了。
2. 为什么在空闲消息可以直接检测activity是否被回收?
跟问题1一样,空闲消息被执行的时候,大概率已经发生过gc,所以可以检测下gc后activity是否被回收。
3. 如果没有被回收,应该是已经泄漏了啊,为什么再次执行了一次gc,然后再去检测?
根据问题2,空闲消息被执行的时候,大概率已经发生过gc,但是也可能还没发生gc,那么此时activity没有被回收是正常的,所以我们手动再gc一下,确保发生了gc,再去检测activity是否被回收,从而100%的确定是否发生了内存泄漏。
推荐阅读:
PermissionX 1.5发布,支持申请Android特殊权限啦
欢迎关注我的公众号
学习技术或投稿
长按上图,识别图中二维码即可关注