云生风
码龄16年
关注
提问 私信
  • 博客:64,395
    64,395
    总访问量
  • 9
    原创
  • 328,070
    排名
  • 17
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2009-02-16
博客简介:

c12345678999的博客

查看详细资料
个人成就
  • 获得35次点赞
  • 内容获得3次评论
  • 获得164次收藏
创作历程
  • 1篇
    2021年
  • 2篇
    2020年
  • 6篇
    2019年
成就勋章
TA的专栏
  • kaldi学习
    3篇
  • 其他
    1篇
  • 音频信号常识
    1篇
  • 时域信号滑动处理
    3篇
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 人工智能
    opencvtensorflownlp聚类迁移学习分类回归
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

kaldi中fbank特征提取详解(结合源码,深度剖析)

kaldi中fbank特征提取详解(结合源码)1. feature-window1.1 feature-window.h 中默认值1.2 feature-window.cc 中相关函数1.2.1 ExtractWindow1.2.2 ProcessWindow1.2.2.1 dither1.2.2.2 remove_dc_offset1.2.2.3 log_energy_pre_window1.2.2.4 preemph_coeff1.2.2.5 window->MulElements(window_
原创
发布博客 2021.12.10 ·
7434 阅读 ·
4 点赞 ·
1 评论 ·
23 收藏

Kaldi 使用,egs下通用样例及功能小结(很硬,慎入)

样例表egs下的样例数据源,功能用到的相关工具aidatatang_200zh/s5数据堂200h中文开源数据,用于语音识别LM+MFCC+Mono+Triphone(tri1:deltas;tri2:delta+delta-delta;tri3a:lda+mllt)+fMLLR+SAT+TDNNaishell/v1openslr33数据 ,声纹识别(ivector)MFCC+UBM+PLDAaishell/s5openslr33数据 ,语音识别LM+MFCC
原创
发布博客 2020.05.29 ·
3885 阅读 ·
13 点赞 ·
0 评论 ·
36 收藏

安装 erlang 及 rabbitMQ 详解

安装步骤1.安装 erlang2.安装 rabbitMQ安装erlang确定自己的服务器版本,而后从官网上下载erlangerlang官网链接.ubuntu 执行 dpkg -i esl-erlang_*(*号内容自己匹配)若出现文件缺失的报错,执行apt-get -f install,而后再次执行 dpkg -i esl-erlang_*安装完毕安装rabbitMQ根据erlang版本,确定rabbitMQ版本号版本对应链接rabbitMQ
原创
发布博客 2020.05.26 ·
346 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

用 Kaldi 进行语音建模1

kaldi 简介:kaldi 是到目前为止,一款非常优秀的语音识别开源建模软件。顺带一下八卦,其作者,Dan Povey 也是来到了中国发展。kaldi 是一个建模工具,而建出来什么样的模型,完全依赖于个人。kaldi 的底层是基于 C,用户可以通过钓调用各种样例脚本进行建模。因为是开源的,所以高级玩法是可以自己修改代码编译。初级玩法是调用现有脚本进行编译。这里说的,只是初级玩法。这里参考g...
原创
发布博客 2019.12.23 ·
604 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

特殊FFT变换

常识铺垫先说常识性的东西,信号处理里面,时域信号通过傅里叶变换可以变换到频域。而DFT的问题是算的比较慢,所以后期出现了FFT变换。但是FFT变换的问题是只能处理 2n2^{n}2n 的数据点,而如果不到2n2^{n}2n的数据点,只能补数到2n2^{n}2n。其实,如果不到2n2^{n}2n的数据点,可以采用FFT变换与DFT变换相结合的方式来进行变换,其速度也是介于FFT变换和DFT变换之...
原创
发布博客 2019.12.18 ·
286 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

声音信号 dB 及 dBA 的计算方式

对于音频采集,需要各种标准环境噪声,如安静环境。我们首先来看什么样的环境叫安静环境(国标):这里我可以看到国标是以 dBA为单位的,那么如何算这个 dBA 。下面先说一下如何计算 dB, 而后再说 dB 与 dBA 的区别,最后再说如何从 dB 转换到 dBA 的计算。dB 的计算(1)标定: 需要一个标准声音源 ,用于标定音频信号幅值对应声压。声音源产生 1000Hz, 94dB ...
原创
发布博客 2019.11.22 ·
41724 阅读 ·
9 点赞 ·
2 评论 ·
56 收藏

时域数据信号滑动处理(3)——滑动均值滤波

这篇很简单,说起来也就几句话。先说基本的,时域卷积就是频域乘法,卷积核也就是频域里面的滤波函数。下面根据实际情况来做介绍。假定我们想要去除50Hz工频,那么最直接的想法是将信号换到频域,然后在50Hz附近加带阻滤波器。但实际中,并不能完全去除50Hz频率,那是因为变换之后的频谱并不是完备的。一般性的方法是每隔一个固定频率做一个均值通过一个周期内的均值为0的特点来抵消其值。去除50Hz的方法...
原创
发布博客 2019.11.01 ·
1614 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

时域数据信号滑动处理(2)——滑动最小二乘拟合SLS

废话不说,直接上一般性最小二乘法公式:公式1表示拟合公式,其中需要拟合的点为 1 -> n 这n个点。滑动算法简单变换就是把 1->n 这些点变换为 2 -> n+1 这些点。公式变换为其中q表示从第几个点开始计算,也就是计算的点是 q -> n+q-1 这n个点。单纯从时域上来考虑,这里会遇到一个问题,就是自变量x是随着q的变大而不断变大的,简单假设采样频率...
原创
发布博客 2019.10.31 ·
1135 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

时域数据信号滑动处理(1)——滑动傅里叶变换SDFT

基本DFT变换公式:(公式1)然后算法优化上有FFT,即采用蝶形运算。这些可在其他网址上搜到,就不再累述。下面主要讲一下,滑动DFT变换(SDFT)如何实现(目前网上还没有现成的,本来想自己推一遍的,后来发现有本书上有写,就稍作了一下总结。书名 《数字信号处理》[美] Richard G. Lyons 著 张建华 徐晓东 孙松林 等译)。首先对DFT公式做了一下简单变换:(公式2)其...
原创
发布博客 2019.10.29 ·
6546 阅读 ·
7 点赞 ·
0 评论 ·
42 收藏