[学习笔记]多项式的各种操作

目录

  • 多项式求逆
  • 多项式除法/取模
  • 多项式牛顿迭代法
  • 多项式开根
  • 多项式 ln
  • 多项式 exp
  • 多项式幂函数

多项式求逆

点此看题

可以暴力递推,时间复杂度 O ( n 2 ) O(n^2) O(n2)

倍增可以将之优化到 O ( n log ⁡ n ) O(n\log n) O(nlogn),我们先从 1 1 1开始倍增,假设现在倍增到了 p p p,得到了模 x p x^p xp的逆元 B ′ ( x ) B'(x) B(x),现在我们要求 B ( x ) B(x) B(x),显然这时候求出来的 B ′ ( x ) B'(x) B(x) B ( x ) B(x) B(x)的一部分,有下列关系式:
B ( x ) − B ′ ( x ) = 0 m o d    x p B(x)-B'(x)=0\mod x^{p} B(x)B(x)=0modxp考虑 B ( x ) − B ′ ( x ) B(x)-B'(x) B(x)B(x)的结果一定是形如 0 + 0 x + 0 x 2 . . . . + a p x p . . . . 0+0x+0x^2....+a_px^p.... 0+0x+0x2....+apxp....,怎么把模数扩展到 2 p 2p 2p呢,可以考虑将它平方,那么平方过的结果形如 0 + 0 x + 0 x 2 . . . . + 0 x 2 p − 1 + a 2 p x 2 p 0+0x+0x^2....+0x^{2p-1}+a_{2p}x^{2p} 0+0x+0x2....+0x2p1+a2px2p,有如下关系式:
( B ( x ) − B ′ ( x ) ) 2 = 0 m o d    x 2 p (B(x)-B'(x))^2=0\mod x^{2p} (B(x)B(x))2=0modx2p B ( x ) 2 + B ′ ( x ) 2 − 2 B ( x ) B ′ ( x ) = 0 m o d    x 2 p B(x)^2+B'(x)^2-2B(x)B'(x)=0\mod x^{2p} B(x)2+B(x)22B(x)B(x)=0modx2p B ( x ) + B ′ ( x ) 2 A ( x ) − 2 B ′ ( x ) = 0 m o d    x 2 p B(x)+B'(x)^2A(x)-2B'(x)=0\mod x^{2p} B(x)+B(x)2A(x)2B(x)=0modx2p B ( x ) = 2 B ′ ( x ) − B ′ ( x ) 2 A ( x ) m o d    x 2 p B(x)=2B'(x)-B'(x)^2A(x)\mod x^{2p} B(x)=2B(x)B(x)2A(x)modx2p然后就可以用卷积算了,时间复杂度 O ( n log ⁡ n + n 2 log ⁡ n 2 . . . . . ) = O ( n log ⁡ n ) O(n\log n+\frac{n}{2}\log \frac{n}{2}.....)=O(n\log n) O(nlogn+2nlog2n.....)=O(nlogn)

#include <cstdio>
#include <iostream>
#include <cmath>
#define int long long
using namespace std;
const int MAXN = 1000005;
const int MOD = 998244353;
int read()
{
   
    int num=0,flag=1;char c;
    while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
    while(c>='0'&&c<='9')num=(num<<3)+(num<<1)+(c^48),c=getchar();
    return num*flag;
}
int n,len,cur,lg,a[MAXN],b[MAXN],A[MAXN],B[MAXN],Rev[MAXN];
int qkpow(int a,int b)
{
   
	int res=1;
	while(b>0)
	{
   
		if(b&1) res=res*a%MOD;
		a=a*a%MOD;
		b>>=1;
	}
	return res;
}
void NTT(int *a,int len,int tmp)
{
   
	lg=(int)round(log2(len));
	for(int i=0;i<len;i++)
	{
   
		Rev[i]=(Rev[i>>1]>>1)|((i&1)<<(lg-1));
		if(i<Rev[i])
			swap(a[i],a[Rev[i]]);
	}
	for(int s=2;s<=len;s<<=1)
	{
   
		int t=s/2,w=(tmp==1)?qkpow(3,(MOD-1)/s):qkpow(3,(MOD-1)-(MOD-1)/s);
		for(int i=0;i<len;i+=s)
		{
   
			int x=1;
			for(int j=0;j<t;j++,x=x*w%MOD)
			{
   
				int fe=a[i+j],fo=a[i+j+t];
				a[i+j]=(fe+x*fo)%MOD;
				a[i+j+t]=((fe-fo*x)%MOD+MOD)%MOD;
			}
		}
	}
	if(tmp==1) return ;
	int inv=qkpow(len,MOD-2);
	for(int i=0;i<len;i++)
		a[i]=a[i]*inv%MOD;
}
void work(int n)
{
   
	len=1;while(len<=2*n) len<<=1;
	for(int i=0;i<len;i++) A[i]=B[i]=0;
	for(int i=0;i<n;i++) A[i]=a[i];
	for(int i=0;i<n;i++) B[i]=b[i];
	NTT(A,len,1);NTT(B,len,1);
	for(int i=0;i<len;i++) A[i]=2*B[i]-B[i]*B[i]%MOD*A[i],A[i]%=MOD;
	NTT(A,len,-1);
	for(int i=0;i<n;i++) b[i]=(A[i]%MOD+MOD)%MOD;
}
signed main()
{
   
	n=read();
	for(int i=0;i<n;i++) a[i]=read();
	b[0]=qkpow(a[0],MOD-2);
	cur=1;
	while(cur<n)
	{
   
		cur<<=1;
		work(cur);
	}
	for(int i=0;i<n;i++)
		printf("%lld ",b[i]);
}

多项式除法

点此看题

给定 n n n次多项式 A ( x ) A(x) A(x) m m m次多项式 B ( x ) B(x) B(x) n > m n>m n>m),求出 n − m n-m nm次的商 C ( x ) C(x) C(x) m − 1 m-1 m1次的余数 D ( x ) D(x) D(x)

由于这里有余数 D ( x ) D(x) D(x)难于处理,我们可以考虑消去它的影响。

可以用一些奇技淫巧,比如说翻转多项式,我们来推一波柿子( R R R表示反转上标):
A ( 1 x ) = B ( 1 x ) C ( 1 x ) + D ( 1 x ) A(\frac{1}{x})=B(\frac{1}{x})C(\frac{1}{x})+D(\frac{1}{x}) A(x1)=B(x1)C(x1)+D(x1) x n A ( 1 x ) = x m B ( 1 x ) ⋅ x n − m C ( 1 x ) + x n D ( 1 x ) x^nA(\frac{1}{x})=x^mB(\frac{1}{x})\cdot x^{n-m}C(\frac{1}{x})+x^nD(\frac{1}{x}) xnA(x1)=xmB(x1)xnmC(x1)+xnD(x1) A R ( x ) = B R ( x ) ⋅ C R ( x ) + x n

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值