
©PaperWeekly 原创 · 作者|宁晓军
学校|北京交通大学硕士生
研究方向|时间序列分析与挖掘;图神经网络
本文介绍一篇北京交通大学网络科学与智能系统研究所贾子钰博士等人,于 IJCAI 2020 发表的论文《GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks for Sleep Stage Classification》,该研究提出一种多变量时间序列分类的通用图神经网络框架并首次应用于睡眠阶段分类。

论文标题:
GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks for Sleep Stage Classification
论文链接:
https://www.ijcai.org/Proceedings/2020/0184.pdf
代码链接:
https://github.com/ziyujia/GraphSleepNet
论文作者主页:
https://ziyujia.github.io/

背景简介
睡眠阶段分类对睡眠质量的评估和疾病的诊断具有重要意义,睡眠专家通常根据睡眠分期标准和多导睡眠图(polysomnography, PSG)来判定睡眠状态。在目前的睡眠分期领域研究中,睡眠专家通常使用 R&K 睡眠分期标准和美国睡眠医学会(AASM)制定的睡眠分期标准进行睡眠阶段的识别。
特别是在 AASM 标准中还记录了不同睡眠阶段之间的转换规则,帮助睡眠专家通过时间上下文进行睡眠分期。虽然有标准和规则提供决策支持,但是由睡眠专家人工进行睡眠分期仍然是一项繁琐且耗时的任务,分期结果也容易受到睡眠专家主观意识的影响。

动机
2.1 挑战
2.1.1 网格数据的局限性
目前大多数睡眠分期模型大多使用 CNNs 和 RNNs 模型,尽管 CNNs 和 RNNs 能够实现较高的睡眠分期准确率,但它们的局限性在于模型的输入必须是网格数据(例如 2D 图像表示),这导致了大脑区域之间的联系被忽略。由于大脑区域处于非欧式空间,因此图应当是表示大脑连接性最自然且最适合的数据结构。
2.1.2 大脑连接关系的建模
基于图卷积神经网络在图结构数据中的成功应用,我们采用图结构表示方法研究睡眠分期问题,在多导 EEG 数据中,每个 EEG 通道对应于睡眠图中的一个节点,两个节点之间的连接对应于睡眠图中存在的边。
固定的图结构是图卷积神经网络中的重要输入,也是提取空间信息的关键。但由于人类对人脑的认知是有限的,因此为睡眠分期预定义合适的空间脑连接结构仍然是一个挑战。因此,论文尝试提出一种数据驱动的大脑连接结构学习模块与与时空图卷积集成于统一的图神经网络框架。
2.1.3 睡眠过渡规则
如何利用相邻睡眠阶段之间的过渡规则也是一个挑战。睡眠专家在进行当前睡眠阶段的分期时,往往会结合其相邻睡眠阶段。因此,充分利用睡眠阶段间的过渡规则往往能够提升睡眠分期的准确率。
2.2 贡献
据我们所知,这是首次尝试将 ST-GCN 应用于睡眠分期领域。此外,我们提出了一种新的自适应睡眠图学习机制,它与 ST-GCN 同时被集成在统一的深度神经网络的架构中。
我们设计了一种基于注意力机制的时空卷积结构,它可以有效的捕获不同睡眠阶段的空间特征和睡眠阶段之间的转换规则。
在基准数据集的实验结果表明,提出的 GraphSleepNet 优于传统的基线方法,取得了 SOTA 的性能。

问题定义
在本研究中睡眠阶段网络被定义为无向图 ,其中 V 表示节点集合,每个节点都对应一个通道(电极),|V|=N 表示睡眠阶段网络中节点的个数;E 是边的集合,表示节点之间的连接关系; 表示睡眠阶段网络 G 的邻接矩阵。
如图 1 所示, 是由一个 30s 的脑电信号序列 构建的,且本文所提出的模型中使用的邻接矩阵 是通过学习得到的,而不是传统的 GCNs 通常使用的固定的邻接矩阵。

睡眠特征矩阵是图形睡眠网的输入。我们将原始信号序列定义为 ,其中 L 表示样本数,Ts 表示每个样本的时间序列长度 。对于每个样本 ,我们提取不同频带上的差分熵(DE)特征,并定义每个样本 的特征矩阵 ,其中 表示样本 i 的第 n 个节点的 个特征。
本文通过时空图卷积神经网络对脑电信号编码并建立其与睡眠分期之间的映射关系。睡眠分期问题定义为:给定睡眠阶段网络序列 ,对当前阶段的睡眠分期 y 进行分类识别。其中 表示 在时间维度的上下文,y 表示 的睡眠阶段类别标签,Tn=2d+1 表示睡眠阶段网络的长度,其中 d∈N+ 表示时间上下文系数。

Adaptive Spatial-Temporal GCN
GraphSleepNet 的总体架构如图 2 所示。我们总结了本文模型的三大关键点:
1)该模型能够表示节点之间的功能连接关系并动态构造邻接矩阵(脑连接网络);
2)该模型利用空间图卷积和时间卷积提取睡眠脑电信号的空间特征和时间特征;
3)该模型采用时空注意机制自动捕获更有价值的时空信息进行高精度分类。

4.1 Adaptive Sleep Graph Learning

如图 3 所示,自适应睡眠图学习可以动态地学习图结构,而不是通过先验知识或人为地构造图(如 k 近邻图)。因此,基于输入的矩阵 ,我们定义了一个非负函数 来表示节点 和

本文介绍了GraphSleepNet,一种应用于睡眠阶段分类的自适应时空图卷积神经网络,旨在解决睡眠分期领域的挑战,如网格数据局限性、大脑连接关系建模及睡眠过渡规则利用。该模型通过自适应睡眠图学习和时空图卷积,结合注意力机制捕获空间和时间特征,实现了睡眠阶段的高精度分类。在Montreal Archive of Sleep Studies数据集上的实验表明,GraphSleepNet超越了传统机器学习和深度学习基线方法。
最低0.47元/天 解锁文章
856

被折叠的 条评论
为什么被折叠?



