AAAI 2018论文解读 | 基于置信度的知识图谱表示学习框架

作者丨谢若冰

单位丨腾讯微信搜索应用部

研究方向丨知识表示学习


知识图谱被广泛地用来描述世界上的实体和实体之间的关系,一般使用三元组(h,r,t)(head entity, relation, trail entity)的形式来存储知识,其中蕴含的知识数量巨大且时常更新。


目前,人工标注已经不能满足知识图谱更新和增长的速度,但自动化构建知识图谱的过程中往往容易引入一些噪声和冲突。


由于大多数传统知识表示学习(Knowledge, Representation Learning, KRL)方法都假设现有知识图谱中的知识是完全正确的,因此会带来潜在误差。


于是,如何从带有噪声或冲突的知识图谱中学习到更好的知识表示向量,同时又能够发现已有知识图谱中可能存在的错误,就成为了亟需解决的问题。 


来自清华大学/腾讯的谢若冰研究员,清华大学的刘知远老师,腾讯的林芬研究员和林乐宇研究员,在即将发表于 AAAI 2018 的论文《Does William Shakespeare REALLY Write Hamlet? Knowledge Representation Learning with Confidence》中,提出了一种新的基于置信度的知识表示学习框架(confidence-aware KRL framework,CKRL),能够发现知识图谱中潜在的噪声或冲突,同时更好地从中学习知识表示


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>