本文是LLM系列文章,针对《ArgMed-Agents: Explainable Clinical Decision Reasoning
with LLM Disscusion via Argumentation Schemes》的翻译。
摘要
在临床推理中使用大型语言模型有两个主要障碍。首先,尽管LLM在自然语言处理(NLP)任务中表现出显著的前景,但它们在复杂推理和规划中的性能达不到预期。其次,LLM使用难以理解的方法来做出与临床医生的认知过程根本不同的临床决策。这导致了用户的不信任。在本文中,我们提出了一个名为ArgMedAgents的多智能体框架,旨在使基于LLM的智能体能够通过交互进行可解释的临床决策推理。ArgMedAgents通过临床讨论论证方案(一种对临床推理中的认知过程建模的推理机制)进行自论证迭代,然后将论证过程构建为表示冲突关系的有向图。最终,使用符号求解器来确定一系列合理和连贯的论据来支持决策。我们构造了ArgMed-Agent的形式模型,并给出了理论保证的猜想。ArgMed Agents使LLM能够通过以自我导向的方式生成推理解释来模拟临床议论文推理的过程。设置实验表明,与其他提示方法相比,ArgMedAgents不仅提高了复杂临床决策推理问题的准确性,而且更重要的是,它为用户提供了决策解释,增加了他们的信心。