Explainable Clinical Decision Reasoning with LLM Disscusion via Argumentation Schemes

本文是LLM系列文章,针对《ArgMed-Agents: Explainable Clinical Decision Reasoning
with LLM Disscusion via Argumentation Schemes》的翻译。

ArgMed-Agents:通过论证方案解释LLM差异的临床决策推理

摘要

在临床推理中使用大型语言模型有两个主要障碍。首先,尽管LLM在自然语言处理(NLP)任务中表现出显著的前景,但它们在复杂推理和规划中的性能达不到预期。其次,LLM使用难以理解的方法来做出与临床医生的认知过程根本不同的临床决策。这导致了用户的不信任。在本文中,我们提出了一个名为ArgMedAgents的多智能体框架,旨在使基于LLM的智能体能够通过交互进行可解释的临床决策推理。ArgMedAgents通过临床讨论论证方案(一种对临床推理中的认知过程建模的推理机制)进行自论证迭代,然后将论证过程构建为表示冲突关系的有向图。最终,使用符号求解器来确定一系列合理和连贯的论据来支持决策。我们构造了ArgMed-Agent的形式模型,并给出了理论保证的猜想。ArgMed Agents使LLM能够通过以自我导向的方式生成推理解释来模拟临床议论文推理的过程。设置实验表明,与其他提示方法相比,ArgMedAgents不仅提高了复杂临床决策推理问题的准确性,而且更重要的是,它为用户提供了决策解释,增加了他们的信心。

1 引言

Robust and explainable autoencoders是一种用于无监督时间序列异常检测的方法,其具有鲁棒性和可解释性。根据引用的ICDE 2022论文,这种方法采用了一种鲁棒的深度自编码器技术,可以有效地识别时间序列数据中的异常值。该方法通过使用对抗训练和稀疏性约束来提高模型的鲁棒性,同时通过可解释的特征表示来增加对异常值的解释能力。 此外,根据引用的KDD 2017论文,该方法还可以应用于其他领域的异常检测任务。该论文提出了使用鲁棒的深度自编码器进行异常检测的框架,并且在多个真实数据集上进行了实验证明了其有效性。 此外,引用的ICDM 2017论文提到了使用自编码器集成进行异常检测的方法。这种方法通过组合多个自编码器模型的输出来提高异常检测的性能和鲁棒性。 综上所述,robust and explainable autoencoders是一种具有鲁棒性和可解释性的自编码器方法,适用于无监督时间序列异常检测任务,并且在多个研究论文中得到了验证和应用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [【论文合集】Awesome Anomaly Detection](https://blog.csdn.net/m0_61899108/article/details/129831851)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值