InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal Models

在这里插入图片描述

主要内容

  1. 模型架构:遵循“ViT-MLP-LLM”范式,使用预训练的视觉编码器和语言模型初始化,引入可变视觉位置编码(V2PE),通过像素重组操作提升处理高分辨率图像的能力。
  2. 训练方法
    • 原生多模态预训练:将语言预训练和多模态对齐训练整合为一个阶段,通过多模态自回归公式和联合参数优化,使模型同时学习语言和多模态能力,使用多模态数据和纯语言数据进行训练,并采用特定采样策略确定数据比例。
    • 后训练:采用监督微调(SFT)和混合偏好优化(MPO)两个阶段。SFT使用更高质量和更多样的数据,MPO通过引入正负样本监督来对齐模型响应分布,提升推理性能。
  3. 测试时缩放策略:采用Best-of-N评估策略,使用VisualPRM-8B作为评判模型,通过给解决方案步骤打分来选择最佳响应,用于推理和数学评估。
  4. 基础设施
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值