Codeforces700C Break Up(搜索+tarjan)

本文解析了一道寻找最短路径并删除最少边数使两点不连通的问题。通过深度优先搜索(DFS)寻找路径,并使用 Tarjan 算法识别桥边来确定关键边。

http://codeforces.com/problemset/problem/700/C 
题意:n个点m条边,从s到t,让你删掉最多两条边,让s和t不通,让花费最小。 
题解:先找一条路出来,因为有路,所以为了不通,肯定要删除上面一条边,所以就是n的枚举删边,删边之后呢,如何找删第二条边,那么肯定要再搜一次看能不能找到一条路径咯,这是m的复杂度,如果没找到,就是删一条,如果找到了,怎么办,总不能再枚举再搜把,如果要删除第二条路里的一条边,从而让s和t分开,没有别的路径从t到达s,那么这条边肯定是桥,所以我们可以在删边之后,m的复杂度tarjan求桥,然后找第二条路径,然后n的复杂度枚举路径找上面是否有桥


代码:

#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")

using namespace std;
#define   MAX           1005
#define   MAXN          60005
#define   maxnode       15
#define   sigma_size    30
#define   lson          l,m,rt<<1
#define   rson          m+1,r,rt<<1|1
#define   lrt           rt<<1
#define   rrt           rt<<1|1
#define   middle        int m=(r+l)>>1
#define   LL            long long
#define   ull           unsigned long long
#define   mem(x,v)      memset(x,v,sizeof(x))
#define   lowbit(x)     (x&-x)
#define   pii           pair<int,int>
#define   bits(a)       __builtin_popcount(a)
#define   mk            make_pair
#define   limit         10000

//const int    prime = 999983;
const int    INF   = 0x3f3f3f3f;
const LL     INFF  = 0x3f3f;
const double pi    = acos(-1.0);
const double inf   = 1e18;
const double eps   = 1e-4;
const LL    mod    = 1e9+7;
const ull    mx    = 133333331;

/*****************************************************/
inline void RI(int &x) {
      char c;
      while((c=getchar())<'0' || c>'9');
      x=c-'0';
      while((c=getchar())>='0' && c<='9') x=(x<<3)+(x<<1)+c-'0';
 }
/*****************************************************/

struct Edge{
    int v,next,c;
}edge[MAXN];
int head[MAX];
int tot;
int s,t;
int vis[MAX];
int dfn[MAX];
int low[MAX];
int bridge[MAXN];
int Index;
void init(){
    mem(head,-1);
    mem(vis,0);
    tot=0;
}

void add_edge(int a,int b,int c){
    edge[tot]=(Edge){b,head[a],c};
    head[a]=tot++;
}

bool dfs(int u,int fa,int del,vector<int>& path){
    vis[u]=1;
    if(u==t) return true;
    for(int i=head[u];i!=-1;i=edge[i].next){
        int v=edge[i].v;
        if(v==fa||(i>>1)==del) continue;
        if(!vis[v]&&dfs(v,u,del,path)){
            path.push_back(i>>1);
            return true;
        }
    }
    return false;
}

void tarjan(int u,int fa,int del){
    dfn[u]=low[u]=++Index;
    int flag=0;
    for(int i=head[u];i!=-1;i=edge[i].next){
        int v=edge[i].v;
        if((i>>1)==del) continue;
        if(v==fa&&!flag){
            flag=1;
            continue;
        }
        if(!dfn[v]){
            tarjan(v,u,del);
            low[u]=min(low[v],low[u]);
            if(low[v]>dfn[u]) bridge[i>>1]=1;
        }
        else low[u]=min(dfn[v],low[u]);
    }
}
int main(){
    //freopen("in.txt","r",stdin);
    int n,m;
    while(cin>>n>>m){
        cin>>s>>t;
        init();
        for(int i=0;i<m;i++){
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            add_edge(a,b,c);
            add_edge(b,a,c);
        }
        vector<int> path;
        if(!dfs(s,-1,-1,path)){
            printf("0\n0\n");   
        }
        else{
            int ans=2e9+5;
            vector<int> ret;
            for(int i=0;i<path.size();i++){
                mem(dfn,0);
                mem(bridge,0);
                mem(vis,0);
                Index=0;
                //cout<<path[i]<<endl;
                for(int j=1;j<=n;j++){
                    if(!dfn[j]) tarjan(j,-1,path[i]);
                }
                vector<int> tmp;
                if(!dfs(s,-1,path[i],tmp)){
                    if(ans>edge[path[i]*2].c){
                        ans=edge[path[i]*2].c;
                        ret.clear();
                        ret.push_back(path[i]+1);
                    }
                }   
                else{
                    for(int j=0;j<tmp.size();j++){
                        if(bridge[tmp[j]]){
                            if(ans>edge[path[i]*2].c+edge[tmp[j]*2].c){
                                ans=edge[path[i]*2].c+edge[tmp[j]*2].c;
                                ret.clear();
                                ret.push_back(path[i]+1);
                                ret.push_back(tmp[j]+1);
                            }
                        }
                    }
                }
            }
            if(ans>2e9) cout<<-1<<endl;
            else{
                cout<<ans<<endl<<ret.size()<<endl;
                for(int i=0;i<ret.size();i++){
                    printf("%d",ret[i]);
                    if(i==ret.size()-1) cout<<endl;
                    else cout<<" ";
                }
            }
        }
    }
    return 0;
}
【源码免费下载链接】:https://renmaiwang.cn/s/2gdnj 《R语言数据挖掘方法及应用》由薛薇编写而成的一本系统阐述R语言在数据挖掘领域前沿技术的著作。该书旨在指导读者学会使用R语言进行高效、实用的数据分析与建模工作,涵盖了从理论基础到实践操作的全过程。作为一款功能强大且开源的统计计算和图形处理平台,R语言凭借其丰富的工具库和社区支持,在数据分析与可视化方面展现出显著优势。在数据挖掘领域,R语言提供了包括`caret`、`randomForest`、`tm`、`e1071`等广泛使用的专用包,这些工具能够帮助用户更便捷地进行数据预处理、特征选择、模型构建和结果评估。全书首先介绍R语言的基本知识体系,涵盖环境配置与安装方法、基础语法规范以及常见数据类型分析等内容。这些基础知识是开展后续数据分析工作的必备技能,通过学习可以快速掌握R语言的核心功能。随后章节深入讲解了数据挖掘的主要概念与流程,包括数据清洗、转换整理和探索性分析等环节,同时详细阐述了分类、聚类、关联规则挖掘及预测等多种典型任务的具体实施方法。这些内容有助于读者全面理解数据挖掘的整体架构及其核心工作步骤。在应用实践部分,薛薇老师结合真实案例展示了R语言在实际业务场景中的具体运用,例如市场细分分析、客户流失预测以及个性化推荐系统等。通过这些案例研究,读者可以深入学习如何利用相关工具包解决实际问题,并提升数据分析能力。此外,书中配套的“案例数据集”和“代码资源”为读者提供了实践操作的机会,使理论知识能够更好地转化为动手技能。通过实际操作分析,读者可以加深对R语言数据挖掘方法的理解并灵活运用。总之,《R语言数据挖掘方法及应用》是一部全面讲解R语言在数据分析与建模领域的教材,无论你是刚开始学习的新人还是经验丰富的专业人士,都能从中获益匪浅。通过深入研读此书,你可以掌握R语言的数据挖掘技巧,并将其应用到实
### Codeforces Coffee Break 问题解析 #### 题目描述 在一个场景中,某人计划在一段时间内喝 `n` 杯咖啡,每杯咖啡有一个特定的饮用时间点(以分钟为单位)。为了健康考虑,在同一天内任意两杯咖啡之间的最小间隔应不少于 `d` 分钟。目标是计算完成所有咖啡饮用所需的最少天数,并指定每一天具体饮用了哪些咖啡。 #### 解决方案概述 通过分析不同时间段内的可用间隙来安排每日的最大可能饮品数量。此过程可以通过多种方式实现,其中一种高效的方法涉及使用二分查找配合数据结构如集合(set)来进行优化处理[^1]。 对于每一个给定的时间戳 t_i ,算法试图找到最早能够容纳该次休息而不违反 d 分钟约束条件的日子 r_j 。一旦找到了合适的位置,则更新对应的日期并继续下一个请求直到全部分配完毕。 ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n, m, d; cin >> n >> m >> d; // 输入参数 vector<int> times(n); for(auto& time : times){ cin>>time; } set<pair<int,int>> days; for(int i=0;i<n;++i){ auto it = days.lower_bound({times[i]-d+1,-1}); if(it!=days.begin()){ --it; cout<<(++(*it).second)<<' '; days.erase(it); }else{ cout<<1<<' '; } days.insert({times[i],*days.rbegin().second+1}); } } ``` 上述代码实现了基于输入时间和间隔限制的有效调度策略。它利用了 STL 中的 `set` 容器及其成员函数 `lower_bound()` 方法来快速定位满足条件的最佳位置[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值