命令行安装tensorflow的诸多细节讲解及整理笔记(小白科普、硬核排坑)

1**
tensorflow的版本选择问题

1.1
首先,想要下载tensorflow, 非常要紧的是要有一个版本概念,因为,这其中涉及很多隐藏关卡。第一遍下载其实无所谓,关键是(第一遍因为某些缘由失败)第二遍第三遍。如果前面注册表,软件残余没有删除干净,并且还使用了不同的tensorflow版本,很多时候都会引起模块缺失,模块无法import等神奇问题。有的时候这些模块是需要手动pip\conda安装的。

1.2
另外,tensorflow分为gpu和cpu,两个版本,gpu版本速度快,能力强,但是尤其要注意CUDA和CUNN与之的匹配。cpu版本功能稍次,但安装简单(初学者推荐,相信我,其实对于你那么几十行代码,运行速度真的区别不大)
如果CUDA与tensorflow不匹配,之后会疯狂报错找不到
关于不同版本tensorflow与CUDA、CUNN的对应关系可以参考这个网址里,里面还提供了不同版本的tensorflow应该配置的模块板块,如果怀疑自己有的某些模块版本不对,可以进去比对
https://docs.floydhub.com/guides/tensorflow/#tensorflow-18

CUDA各版本的下载链接参考这篇博文:
https://blog.csdn.net/discoverer100/article/details/86696311?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task

关于CUDA和CUNN的安装及环境配置,大致可以参考这篇博文
https://blog.csdn.net/weixin_40802676/article/details/94753951?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task
但是我提醒一点!!!!!!!!!
这篇博文的方法有一个小问题
这里最好选择自定义
在这里插入图片描述
然后
在这里插入图片描述
在这里插入图片描述
至少最后一张图这个得把它去勾,如果这样失败了,那就把第二章图的那三个勾也去掉。

1.3
然后,还有一点,非常重要,就是tensorflow自2.0版本之后,舍弃了很多1.x版本的模块,譬如最经典的小白程序
import tensorflow as tf
hello=tf.constant(“hello,tf!”)
sess=tf.session()
print(sess.run(hello))
这个程序在2.0以后版本是运行不了的,因为session模块,2.0以后就废弃不用了。
非要用它,你可以这么干(。。。。。麻烦不少)
import tensorflow as tf
import cv2
tf.compat.v1.disable_eager_execution() #2.0使用Session这一行不可少的
data1 = tf.constant(2.5)
data2 = tf.Variable(10,name=‘var’)
data1=tf.print(data1) #tf.print只是构建一个op,打印这个常量还需sess.run
sess = tf.compat.v1.Session() #相当于还原旧版本
print(sess.run(data1))

命令行下载的流程大致可以参考这篇博文
https://blog.csdn.net/lxy_2011/article/details/79181990
但是有几点注意
首先,anaconda别在官网下载,请认准清华镜像源,下载快十倍。
链接如下:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
第二,不要随便使用pip install “某个模块名”,例pip install tensorflow,相信我,以正常家庭的网速,百分之九九超时报错,
正确做法:“pip install -i”+ "某个镜像源链接“+ ”软件或模块名“

示例:pip install -i http://mirrors.aliyun.com/pypi/simple/ tensorflow-gpu
pip install -i http://mirrors.aliyun.com/pypi/simple/ tensorflow-gpu==1.8
pip install -i https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ opencv-python (这里提示一下,用命令行下载opencv,直接写opencv似乎找不到它,可以写成opencv-python)
当系统报错 ImportError: DLL load failed: 找不到指定的程序。
解决办法就是:
卸载相关的模块,然后用镜像源重新安装!

想要国内各种镜像源链接参考这篇博文:https://www.cnblogs.com/yikemogutou/p/11396045.html

第三,在创建携带python3.5.2的虚拟环境:conda create - -name tensorflow python=3.5.2,
激活这个名为tensorflow的虚拟环境后,activate tensorflow
我们就在这个环境里继续下载tensorflow和opencv和编译器jupyter notebook
具体如下

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
顺带一提,上面三张图片和下面是对应的
都是先创建一个虚拟环境,然后在这个非root的环境中下载其他模块。
我在不activate tensorflow的情况下,直接pip下载tensorflow和opencv都遭遇了失败,我也不太清楚不进入创建的虚拟环境而直接在根目录下载有什么问题,但总之我最后在activate tensorflow之后,进行pip安装,获得了成功。。。(假装理直气壮的分享经验)
在这里插入图片描述
在这里插入图片描述
而在命令行安装的情况下,我们可以任意安装各种版本的模块。
如果你不清楚我已经有什么模块了,可以使用conda list来查找,当系统报错你的模块版本问题,也使用此命令,与https://docs.floydhub.com/guides/tensorflow/#tensorflow-18中的各种版本的tensorflow所拥有的模块进行比对。需要提醒的是,不是真的这个网页上所有的模块都需要有,要一个一个装过去,实际上,是在遇到错误之后再去查找更换罢了。
如果你不清楚自己该下载模块的版本,可以使用
anaconda search -t conda +模块名 进行查找它有哪些衍生版本
使用show指令来查看该包的详细情况
anaconda show 模块名
然后使用镜像源指令install这个包

关于这个安装过程中可能遇到的错误太多了,我先说到这么多,再想到什么对于新入坑的同学有所裨益的提示,我会之后补充。
第一次写文章逻辑还有点混乱,请大家多多包涵,实在抱歉。

发布了1 篇原创文章 · 获赞 0 · 访问量 59
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 游动-白 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览