Python 数据分析与挖掘
工具:Numpy,Scipy,Pandas,Scikit-Learn(数据科学库)
Matplotlib,Seaborn(数据可视化库)
Anaconda(数据科学集成平台,包含了以上所有的库)
数据获取/读取(保存)
Pandas I/O
Pandas I/O 支持的数据格式:
Excel, JSON, HTML, HDF5, CSV(read_csv , to_csv)
tips:1.查看文件路径 :右击文件,显示简介,位置,command+c command+v /Users/cxfay/Desktop/sis,暂时还是复制到桌面来搞
2.u盘无法写入文件是因为文件系统不支持的原因。
优盘是NTFS格式,而macosx只支持 FAT格式 或者 mac文件系统
方法:1,格式化优盘,更改为FAT或者你的mac可以支持的格式 就可以写入了
2,在osx系统上安装支持读取和写入 NTFS分区的插件后者稍微有点复杂,可以考虑第一种方案,把优盘改成FAT32 就可以了,这样的话windows和macosx都可以读写。


光标定位csv,然后shift+tab可以查看当前默认选项。

本文介绍了在Mac上进行Python数据分析与挖掘的学习路径,包括使用的工具如Numpy、Scipy、Pandas和Scikit-Learn等数据科学库,以及Matplotlib和Seaborn进行数据可视化。此外,还提到了数据获取和读取的关键库Pandas I/O,它支持Excel、JSON、HTML、HDF5和CSV等格式。文章中分享了在Mac上处理Excel文件的技巧,如查看文件路径,解决U盘在Mac上无法写入文件的问题,建议将优盘格式化为FAT或使用支持NTFS的插件。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=118897320&d=1&t=3&u=9d5471b0865b4d31a84d39e362001cc2)
281

被折叠的 条评论
为什么被折叠?



