28、如果你有两个桶,一个装的是红色的颜料,另一个装的是蓝色的颜料。你从蓝色颜料桶里舀一杯,倒入红色颜料桶,再从红色颜料桶里舀一杯倒入蓝颜料桶。两个桶中红蓝颜料的比例哪个更高?通过算术的方式来证明这一点。
答案:如果桶大小相同,且桶内颜料都大于2倍杯子,且倒入后均匀搅拌,且不溢出,则红桶中红蓝颜料比肯定大于蓝桶中红蓝颜料比
29、一个岔路口分别通向诚实国和说谎国。来了两个人,已知一个是诚实国的,另一个是说谎国的。诚实国永远说实话,说谎国永远说谎话。现在你要去说谎国,但不知道应该走哪条路,需要问这两个人。请问应该怎么问?
答案:分别问两个人:如果你是对方会指那条路?走2个人指的另外一条路,因为2者都会指错误的路。
30、在9个点上画10条直线,要求每条直线上至少有三个点?
答案:其实没有说明白是怎么样的9个点,所以如果9个点是一条直线上,很容易做到,如果是其他情况,好像是做不到。
31、怎么样种植4棵树木,使其中任意两棵树的距离相等?
答案:模拟一个等边三角体,分别在底平面种三棵,在顶上种一棵。
32、一道关于飞机加油的问题,已知:
每个飞机只有一个油箱,飞机之间可以相互加油(注意是相互,没有加油机)一箱油可供一架飞机绕地球飞半圈,问题:为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?(所有飞机从同一机场起飞,而且必须安全返回机场,不允许中途降落,中间没有飞机场)
答案:3架飞机5架次,飞法:
ABC 3架同时起飞,1/8处,C给AB加满油,C返航,1/4处,B给A加满油,B返航,A到达1/2处,C从机场往另一方向起飞,3/4处,C同已经空油箱的A平分剩余油量,同时B从机场起飞,AC到7/8处同B平分剩余油量,刚好3架飞机同时返航。所以是3架飞机5架次。
33、一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走 1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里。
提示:他可以把香蕉放下往返的走,但是必须保证它每走一米都能有香蕉吃。也可以走到n米时,放下一些香蕉,拿着n根香蕉走回去重新搬50根。
答案:是十六,在起先的五十米中的十七米,猴子每向家走一米要搬两趟,也就是先走一米放下香焦,回去再搬,这样每向家走一米要花3根香焦,后33米由于香焦吃了51根,无须跑两趟,则一米就花一根橡胶。所以100-3*17-33=16。
34、一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么?
答案:13分解的3个加数和,分别相乘后,只有36有两个,因为下属不确定,证明这个数出现了2次或以上,所以经理36,孩子的年龄为1、6、6或2、2、9,因为说只有一个是黑色的,所以可能的意思是说2岁以下的头发还没变黑。所以是2、2、9。
35、有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,
而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。他们每人怎样才能取回黑袜和白袜各两对呢?
答案:各拿每双中的一只就可以凑成对了。
36、有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29。可是当初他们三个人一共付出$30那么还有$1呢?
答案:在计算27+2时混淆了概念,2元本来就包括在27元以内。
37、国王招来100个囚犯,对他们说:你们犯的是死罪,本应该将你们统统杀掉,但我慈悲为怀,给你们一次求生的机会。15分钟以后,你们将被关进一个有100间隔离牢房的监狱里,每人一间牢房,都与外界隔绝,什么也听不见、看不到,连时间都没法计算,更别说获得外界的任何信息。(送饭除外,但也是不规律的送)
这所监狱有一个院子,每天会随机(注意是完全随机)打开一间牢房的门,让那个囚犯到院子里来放风。院子里有一盏路灯,放风的囚犯可以控制它的开关,将它打开或是关闭。除囚犯之外,其他人都不会去碰开关。这盏灯会永远有充足的能源供应,如果灯泡坏了或是电路出了故障会马上修好,当然修理人员不会改变灯的状态(开或关)。
除了开关这盏灯,放风的囚犯放风时留下的任何其它痕迹都会在夜晚被清除干净(包括在灯上作的任何记号)。
牢房是完全封闭的,院子里的灯光在牢房里看不到。只有放风出到院子里的人才能看到。好了现在我向你们提出一个要求,只要你们做到了,就可以全部获得释放:
若干天以后,你们中只要有任何一个人能够向我证明所有的人都曾到院子里去过,你们就全体释放。当然要有证据!因为我只会给你们一次机会,如果向我证明的那个人无法自圆其说,你们就全部砍头。所以,要珍惜这次机会。如果你们永远做不到我的要求,你们就全部关到死。
现在给你们15分钟商量你们的方案。15分钟以后,你们将被关进我刚才说的那个监狱,永远无法再交流。
答案:规定每个第一次出去的人如果灯灭就把灯打开,灯亮就保持灯开,如果第二次及第二次以上出去灯亮就把灯关了,灯灭就保持灯灭,每天出去的人看到前一天如果灯亮,就记下1,如果多次看见就累加,当所有人都出去过了以后,国王召集大家,每个人只要把自己记下的看到灯亮的次数相加是100,即可证明所有人都出去过。
这个问题需要说明当所有人都出去以后,国王就会把大家召集在一起,国王只是需要一种证明方式,否则就会陷入概率的陷阱。
38、1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?
答案:40瓶。
39、乒乓球问题
假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。条件是:每次拿球者至少要拿1个,但最多不能超过5个,问:如果你是最先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球?
答案:第一个人先拿4个,以后每次第二个人拿N个,第一个人就拿6-N个,肯定能拿到最后一个。
40、囚犯摸豆问题:
5个囚犯,分别按1-5号在装有100颗绿豆的麻袋抓绿豆,规定每人至少抓一颗,而抓得最多和最少的人将被处死,而且,他们之间不能交流,但在抓的时候,可以摸出剩下的豆子数。问他们中谁的存活机率最大??
提示:
1,他们都是很聪明的人
2,他们的原则是先求保命,再去多杀人
3,100颗不必都分完
4,若有重复的情况,则也算最大或最小,一并处死
答案:这个问题的答案我在网上看到了很多,有的可以准确的计算概率,有的只是凭空想象,
其中有一个答案就是可以准确的算出概率,但是答案的前提是每个人都不会取相同的数量,这个前提就是错误的,所以结果也不会正确。
我最早的看法是第二个人存活概率,理由是通过对第一个人取绿豆的数量来分析其它四个人的存活概率,首先可以明确的是第2-5人的策略都是取前面几个人数量的均值,有小数的取最近的两个整数。这里补充一点,本题中如果每个人抓取后剩下的数量最少要保证剩下没人有一个,这应该是题中漏掉的一点说明吧,否则这题就会有漏洞。
如果第一个人取20以下,第2个人取和第一个人数量N或N+1或N-1,第3-5个人取前两个人数量中的一个。则五个人都死。
如果第一个人取20以上49以下,则第2-4个人都抓比第一个人数量少且最接近的,最后第一个人和第五个人死。
如果第一个人取49及以上96以下,则第2个人只给剩下的三个人留三个,剩下三个人必死。
如果第一个人取96,则五个人全死。
所以第二个人存活概率大。
这是我最初的想法,但是后来发现我忽略了一个事实,无论第一个人如何取数,他必死,那么根据第2条提示,他既然不能保命,他就会多杀人,所以他一定会去1-20或96,则所有人都死。
所以我认为出于提示1和提示2,结果大家应该都死。
come from http://hi.baidu.com/dannbrown/blog/item/54e597ce8176583eb600c8d9.html