第八章:深度学习之循环神经网络与递归神经网络

8.1 循环神经网络与递归神经网络的区别与联系

1.循环神经网络(recurrent neural network)是时间上的展开,处理的是序列结构的信息,是有环图,模型结构如下:

第八章:深度学习之循环神经网络与递归神经网络

recurrent: 时间维度的展开,代表信息在时间维度从前往后的的传递和积累,可以类比markov假设,后面的信息的概率建立在前面信息的基础上,在神经网络结构上表现为后面的神经网络的隐藏层的输入是前面的神经网络的隐藏层的输出;

2.递归神经网络(recursive neural network)递归神经网络是空间上的展开,处理的是树状结构的信息,是无环图,模型结构如下:

第八章:深度学习之循环神经网络与递归神经网络

recursive: 空间维度的展开,是一个树结构,比如nlp里某句话,用recurrent neural network来建模的话就是假设句子后面的词的信息和前面的词有关,而用recurxive neural network来建模的话,就是假设句子是一个树状结构,由几个部分(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值