转自 https://blog.csdn.net/controlbear/article/details/77527115
刚才手动推了一下 用线性筛筛约数个数和约数和,就顺便写篇博客记录一下。不过网上应该也有不少人推过了。
根据算术基本定理我们可以知道,每一个大于等于2的正整数,都可以被分解成这种形式。
,其中 p 为素数。
线性筛就是每一次被最小素因子给筛出。
线性筛写法 (只筛素数) [我个人比较常用]
-
const
int N=
1e5+
5;
-
bool mark[N];
-
int prim[N];
-
int cnt;
-
void initial()
-
{
-
cnt=
0;
-
for (
int i=
2 ; i<N ; ++i)
-
{
-
if (!mark[i])
-
prim[cnt++]=i;
-
for (
int j=
0 ; j<cnt && i*prim[j]<N ; ++j)
-
{
-
mark[i*prim[j]]=
1;
-
if (!(i%prim[j]))
-
break;
-
}
-
}
-
}
这里就不写出来了。T_T 大家应该都筛过吧(我懒得贴了)
约数个数
算术基本定理中,根据拆分后的素因子的指数,我们可以求出每个 N 的约数的个数。
根据这个式子,我们可以用线性筛去筛出当前 N 的约数个数。
筛的过程中,我们需要保存下最小素因子的个数。
下面证明中
d(i) 表示 i 的约数个数
num[i] 表示 i 的最小素因子的个数
prim[i] 表示 第 i 个素数
① 当前数是素数
这种情况我们很容易得到,当前的 d(N) = (1+1) = 2,
因为素数只有一个素因子(就是它本身),并且指数为 1 。
而最小素因子个数 num[N] = 1
② i%prim[j] !=0
这种情况,我们可以知道 i 当中,并不包含 prim[j] 这个素因子,然而,i*prim[j] 中, 包含了一个 prim[j]
我们可以从前面得到 i 的所有约数个数
然后在补上 当前多了 素因子 prim[j] 的个数
所以最后 d(i*prim[j]) = d(i)*d(prim[j])
而且由于 当前的 prim[j] 必然是 i*prim[j] 的最小素因子 (因为从小到大枚举啊!), 我们要记录下这个最小素因子的个数
所以保存一个个数 num[i*prim[j]] = 1
③ i%prim[j]==0
这种情况, i 中必然包含了至少 1 个 prim[j] ,而且 prim[j] 也必定是 i 的最小素因子,因为每次枚举都是从小的素数开始枚举。
而 i*prim[j] 比起 i 则是多了一个最小素因子个数,即
那么 i*prim[j] 的约数个数 应该是
之后,我们就要用到我们之前记录下的最小素因子个数了,因为我们可以知道 i 的最小素因子个数 为 num[i] ,而 d(i) 中 已经包含了
这时我们 我们可以除去第一项 然后乘以 ,就可以得到 d(i*prim[j]) 的约数个数了。
d(i*prim[j]) = d(i) / (num[i]+1) * (num[i]+2)
当前 num[i*prim[j]] = num[i]+1 ,继续保存下当前最小素因子个数。
根据这样,我们就能用线性筛打表出 1 到 N 的数的约数个数。
-
const
int N=
1e5+
5;
-
bool mark[N];
-
int prim[N],d[N],num[N];
-
int cnt;
-
void initial()
-
{
-
cnt=
0;
-
d[
1]=
1;
-
for (
int i=
2 ; i<N ; ++i)
-
{
-
if (!mark[i])
-
{
-
prim[cnt++]=i;
-
num[i]=
1;
-
d[i]=
2;
-
}
-
for (
int j=
0 ; j<cnt && i*prim[j]<N ; ++j)
-
{
-
mark[i*prim[j]]=
1;
-
if (!(i%prim[j]))
-
{
-
num[i*prim[j]]=num[i]+
1;
-
d[i*prim[j]]=d[i]/(num[i]+
1)*(num[i*prim[j]]+
1);
-
break;
-
}
-
d[i*prim[j]]=d[i]*d[prim[j]];
-
num[i*prim[j]]=
1;
-
}
-
}
-
}
约数和
[其实证明跟约数个数基本一样,只不过是用的式子有点不一样]
算数基本定理中,如果要求N的约数的和,可以用这条式子。
同样,我们一样可以用这条式子去筛出当前 N 的约数和。
筛的过程中,我们需要保存最小素因子的那一项的和,即。
下面证明中
sd(i) 表示 i 的约数和
sp[i] 表示 i 的最小素因子的等比数列的和 (我不知道怎么形容这个啊,就上面说要保存的那一项)
prim[i] 表示第 i 个素数
①当前数是素数
这种情况我们可以很容易得到,当前的 sd(N) = 1+i
因为素数只有一个素因子,即只有一项合式,且指数最高为 1 。
而该项 sp[N] = 1+i
② i%prim[j] !=0
这种情况,我们可以知道 i 当中,并不包含 prim[j] 这个素因子,然而,i*prim[j] 中, 包含了一个 prim[j]
而前面我们已经得到了 i 的约数和了,而其中不包括 (1+prim[j]) 这一项,而 i*prim[j] 的约数和只是多了这一项。
i 的约数和是
那么 i*prim[j] 的最后结果应该是
即 sd(i*prim[j]) = sd(i) * sd(prim[j])
而 prim[j] 是 i*prim[j] 的最小素因子 (因为从小到大枚举啊! [第二次提了]),因此sp[i*prim[j]] = 1+prim[j]
③ i%prim[j]==0
这种情况, i 中必然包含了至少 1 个 prim[j] ,而且 prim[j] 也必定是 i 的最小素因子,因为每次枚举都是从小的素数开始枚举。
只不过 i*prim[j] 比起 i 则是在最小素因子那一项多了
那么 i*prim[j] 的约数和就是
之后,我们用到前面保存下来的最小素因子那一项的和,因为 i 中 应该是
我们可以知道最小素因子的那一项的和,而要得到
只需要将第一项 乘以 prim[j] 然后再 加一,就可以得到了。
sd(i*prim[j]) = sd(i) / sp[i] * (sp[i]*prim[j]+1)
当前 sp[i*prim[j]] = sp[i]*prim[j]+1,继续保存最小素因子一项的和。
根据这样,我们就可以能用线性筛打表出 1 到 N 的约数和。
-
const
int N=
1e5+
5;
-
bool mark[N];
-
int prim[N];
-
long
long sd[N],sp[N];
-
int cnt;
-
void initial()
-
{
-
cnt=
0;
-
sd[
1]=
1;
-
for (
int i=
2 ; i<N ; ++i)
-
{
-
if (!mark[i])
-
{
-
prim[cnt++]=i;
-
sd[i]=i+
1;
-
sp[i]=i+
1;
-
}
-
for (
int j=
0 ; j<cnt && i*prim[j]<N ; ++j)
-
{
-
mark[i*prim[j]]=
1;
-
if (!(i%prim[j]))
-
{
-
sp[i*prim[j]]=sp[i]*prim[j]+
1;
-
sd[i*prim[j]]=sd[i]/sp[i]*sp[i*prim[j]];
-
break;
-
}
-
sd[i*prim[j]]=sd[i]*sd[prim[j]];
-
sp[i*prim[j]]=
1+prim[j];
-
}
-
}
-
}