
本文介绍普通UKF与强跟踪无迹卡尔曼滤波(Strong Tracking Unscented Kalman Filter, ST-UKF)算法的 MATLAB 代码示例。该示例涉及三维非线性状态量和观测量。
文章目录
这段代码实现了强跟踪无迹卡尔曼滤波(Strong Tracking Unscented Kalman Filter, ST-UKF),主要用于非线性动态系统的状态估计。以下是代码的主要功能和步骤:
主要功能
- 状态估计:通过处理带有噪声的观测数据,估计系统的真实状态。
- 自适应调整:根据观测残差动态调整滤波器的参数,以提高估计的精度和稳定性。
主要步骤
- 初始化:设置遗忘因子、协方差矩阵、初始状态和时间序列。
- sigma点生成:根据当前状态和协方差生成 sigma 点,以便进行状态预测。
- 状态预测:
- 根据非线性状态模型对 sigma 点进行预测。
- 计算预测状态的均值和协方差。
- 观测预测:根据预测的状态计算观测值的预测均值和协方差。
- 卡尔曼增益计算:通过预测的观测和实际观测之间的关系计算卡尔曼增益,用于更新状态估计。
- 状态和协方差更新:
- 根据观测残差更新状态估计。
- 更新协方差矩阵,以反映新的不确定性。

订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



