【LSTM多输入单输出】基于长短期记忆网络的多输入单输出回归预测的MATLAB例程,附下载链接

在这里插入图片描述

本文所述的代码示例演示了如何使用长短期记忆网络(LSTM)进行多输入单输出的回归预测。具体功能包括数据生成、预处理、模型构建、训练及性能评估。

代码介绍

主要步骤

  1. 数据生成与预处理

    • 模拟工业传感器数据,包括多个特征和目标值的非线性组合。
    • 对数据进行标准化,以加速模型的收敛速度。
  2. 构建LSTM回归模型

    • 使用LSTM层提取时序特征,并通过Dropout层防止过拟合。
    • 定义全连接层和激活函数,以引入非线性。
  3. 数据划分与序列生成

    • 采用滑动窗口方法将时序数据转换为监督学习格式。
  4. 训练参数配置

    • 使用Adam优化器进行训练,设置学习率调整策略及验证数据。
  5. 模型训练与保存

    • 训练模型并可以选择保存训练好的模型及标准化参数。
  6. 预测与反标准化

    • 使用训练好的模型进行预测,并将结果反标准化以获得实际值。
  7. 性能评估

    • 计算均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R²)来评估模型性能。
  8. 可视化分析

    • 绘制预测结果与真实值的对比图、误差曲线和误差分布直方图。

相关公式

目标值的非线性组合
y = 0.3 ⋅ x 1 + 0.5 ⋅ tanh ⁡ ( x 2 ) − 0.2 ⋅ x 3 2 y = 0.3 \cdot x_1 + 0.5 \cdot \tanh(x_2) - 0.2 \cdot x_3^2 y=0.3x1+0.5tanh(x2)0.2x32
其中 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3是特征矩阵中的不同特征,目标值 (y) 是通过非线性函数组合得到的。

Z-score标准化
X n o r m = X − μ σ X_{norm} = \frac{X - \mu}{\sigma} Xnorm=σXμ
其中, μ \mu μ是特征的均值, σ \sigma σ是标准差。标准化过程确保数据均值为0,标准差为1。

LSTM单元的输出(简化版):
h t = o t ⊙ tanh ⁡ ( c t ) h_t = o_t \odot \tanh(c_t) ht=ottanh(ct)
c t = f t ⊙ c t − 1 + i t ⊙ c ~ t c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t ct=ftct1+itc~t
o t = σ ( W o ⋅ [ h t − 1 , x t ] + b o ) o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) ot=σ(Wo[ht1,xt]+bo)
其中:

  • h t h_t ht 是当前时刻的隐状态,
  • c t c_t ct是单元状态,
  • o t o_t ot 是输出门,
  • i t i_t it 是输入门,
  • f t f_t ft 是遗忘门,
  • c ~ t \tilde{c}_t c~t 是候选值。

均方根误差(RMSE)
RMSE = 1 n ∑ i = 1 n ( y t r u e , i − y p r e d , i ) 2 \text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_{true,i} - y_{pred,i})^2} RMSE=n1i=1n(ytrue,iypred,i)2

平均绝对误差(MAE)
MAE = 1 n ∑ i = 1 n ∣ y t r u e , i − y p r e d , i ∣ \text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_{true,i} - y_{pred,i}| MAE=n1i=1nytrue,iypred,i

决定系数(R²)
R 2 = 1 − ∑ i = 1 n ( y t r u e , i − y p r e d , i ) 2 ∑ i = 1 n ( y t r u e , i − y ˉ t r u e ) 2 R^2 = 1 - \frac{\sum_{i=1}^{n} (y_{true,i} - y_{pred,i})^2}{\sum_{i=1}^{n} (y_{true,i} - \bar{y}_{true})^2} R2=1i=1n(ytrue,iyˉtrue)2i=1n(ytrue,iypred,i)2
其中, y ˉ t r u e \bar{y}_{true} yˉtrue是真实值的均值。

运行结果

真值与预测值对比曲线:
在这里插入图片描述
误差曲线:

在这里插入图片描述
误差分布直方图:
在这里插入图片描述

训练收敛曲线:
在这里插入图片描述

MATLAB源代码

部分代码:

%% 【LSTM多输入单输出】基于长短期记忆网络的多输入单输出回归预测的例程
% 2025-06-15/Ver3
clc; clear; close all;
rng(0);  % 固定随机种子确保实验可重复性

%% 数据生成与预处理(模拟工业传感器数据)
numSteps = 1000;          % 总数据点数(建议≥1000以保证时序特征学习)
numFeatures = 10;         % 特征维度(对应工业传感器数量)

% 生成基准信号(包含非线性趋势)
time = linspace(0, 20*pi, numSteps)';  % 时间序列(带周期性变化)
baseSignal = 0.5*sin(0.5*time) + 0.3*cos(2.5*time);  % 复合周期信号

% 构建多变量特征矩阵(模拟多传感器读数)
features = zeros(numSteps, numFeatures);
for i = 1:numFeatures
    noise = 0.1*randn(numSteps,1);  % 添加高斯噪声模拟传感器误差
    features(:,i) = baseSignal.*(0.8+0.1*i) + 0.2*sin(i*time) + noise; % 生成非线性相关特征
end

完整代码:https://download.csdn.net/download/callmeup/91023042

或:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB卡尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值