支持向量
支撑向量本质是向量,而这些向量却起着很重要的作用,如果做分类,他们就是离分界线最近的向量。也就是说分界面是靠这些向量确定的,他们支撑着分类面。
凸二次规划问题:优化目标函数是二次函数,且是凸函数,约束条件是线性函数。
如果一个线性函数能够将样本分开,称这些数据样本是线性可分的。那么什么是线性函数呢?其实很简单,在二维空间中就是一条直线,在三维空间中就是一个平面,以此类推,如果不考虑空间维数,这样的线性函数统称为超平面。我们看一个简单的二维空间的例子,O代表正类,X代表负类,样本是线性可分的,但是很显然不只有这一条直线可以将样本分开,而是有无数条,我们所说的线性可分支持向量机就对应着能将数据正确划分并且间隔最大的直线。
通常我们需要求解的最优化问题有如下几类:
(i) 无约束优化问题,可以写为:
min f(x);
(ii) 有等式约束的优化问题,可以写为:
min f(x),
s.t. h_i(x) = 0; i =1, …, n
(iii) 有不等式约束的优化问题,可以写为:
min f(x),
s.t. g_i(x) <= 0; i =1, …, n
h_j(x) = 0; j =1,

本文介绍了支持向量机的基本概念,包括如何通过凸二次规划问题寻找最佳超平面进行样本分类。讨论了无约束、等式约束和不等式约束优化问题的解决方法,如Fermat定理、拉格朗日乘子法和KKT条件。并提供了相关数学符号和SVM原理的详细推导链接。
最低0.47元/天 解锁文章
836

被折叠的 条评论
为什么被折叠?



