AcWing788.逆序对的数量

题目描述

给定一个长度为 n n n 的整数数列,请你计算数列中的逆序对的数量。

逆序对的定义如下:对于数列的第 i i i 个和第 j j j 个元素,如果满足 i < j i < j i<j a [ i ]   >   a [ j ] a\left[i\right]\ >\ a\left[j\right] a[i] > a[j],则其为一个逆序对;否则不是。

输入格式

第一行包含整数 n n n,表示数列的长度。

第二行包含 n n n 个整数,表示整个数列。

输出格式

输出一个整数,表示逆序对的个数。

数据范围

1   ≤   n   ≤   100000 1\ \le\ n\ \le\ 100000 1  n  100000
数列中的元素的取值范围 1   ∼   1 0 9 1\ \sim\ 10^{9} 1  109

输入样例:
6
2 3 4 5 6 1
输出样例:
5
图解(图来自Hasity大佬

在这里插入图片描述
所以,这样我们就可以用一个变量res来记录逆序对总数
并将原来归并排序的函数改为 l o n g   l o n g long \ long long long类型,然后将一个大区间分为两半,将两半统计的逆序对数量相加即可。

My Code
#include <iostream>

using namespace std;

typedef long long LL;

const int N = 1e5 + 10;

int a[N], tmp[N];

LL merge_sort(int q[], int l, int r)
{
    if (l >= r) return 0;

    int mid = l + r >> 1;

    LL res = merge_sort(q, l, mid) + merge_sort(q, mid + 1, r);

    int k = 0, i = l, j = mid + 1;
    while (i <= mid && j <= r)
        if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
        else
        {
            tmp[k ++ ] = q[j ++ ];
            res += mid - i + 1;
        }
    while (i <= mid) tmp[k ++ ] = q[i ++ ];
    while (j <= r) tmp[k ++ ] = q[j ++ ];

    for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];

    return res;
}

int main()
{
    int n;
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);

    cout << merge_sort(a, 0, n - 1) << endl;

    return 0;
}

一步一个脚印,一起学习,一起进步

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值