高精度模板大杂烩
想必大家小学都学过竖式计算吧,高精度就是一种模拟小学生计算的算法
例题传送门
模板
这里的模板采用了STL容器
v
e
c
t
o
r
vector
vector,方便维护最后得到的结果
高精度乘除减法都需要判断前导零
加法
#include <bits/stdc++.h>
using namespace std;
vector<int> add(vector<int> &A,vector<int> &B)
{
if(B.size() > A.size()) return add(B,A);
int t = 0;
vector<int> c;
for(int i = 0;i < A.size();i ++ )
{
t += A[i];
if(i < B.size()) t += B[i];
c.push_back(t % 10);
t /= 10;
}if(t) c.push_back(t);
return c;
}
int main()
{
string a,b;
cin >> a >> b;
vector<int> A,B;
for(int i = a.size() - 1;i >= 0;i -- ) A.push_back(a[i] - '0');
for(int i = b.size() - 1;i >= 0;i -- ) B.push_back(b[i] - '0');
auto c = add(A,B);
for(int i = c.size() - 1;i >= 0;i -- ) cout << c[i];
return 0;
}
这里是倒序储存,倒序输出
值得一提的是代码的运算特判了
i
f
(
B
.
s
i
z
e
(
)
>
A
.
s
i
z
e
(
)
)
r
e
t
u
r
n
a
d
d
(
B
,
A
)
;
if(B.size() > A.size()) return add(B,A);
if(B.size()>A.size())returnadd(B,A);
这是因为我们在后来的运算中,默认A的位数比B大,所以加了一条特判
减法
#include <bits/stdc++.h>
using namespace std;
bool check(vector<int> &A,vector<int> &B)
{
if(A.size() != B.size()) return A.size() > B.size();
for(int i = A.size();i >= 0;i -- )
if(A[i] != B[i]) return A[i] > B[i];
return true;
}
vector<int> sub(vector<int> &A,vector<int> &B)
{
int t = 0;
vector<int> c;
for(int i = 0;i < A.size() || t;i ++ )
{
t = A[i] - t;
if(i < B.size()) t -= B[i];
c.push_back((t + 10) % 10);
if(t < 0) t = 1;
else t = 0;
}
while(c.size() > 1 && c.back() == 0) c.pop_back();
return c;
}
int main()
{
string a,b;
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
cin >> a >> b;
vector<int> A,B;
for(int i = a.size() - 1;i >= 0;i -- ) A.push_back(a[i] - '0');
for(int i = b.size() - 1;i >= 0;i -- ) B.push_back(b[i] - '0');
if (check(A,B))
{
auto C = sub(A, B);
for(int i = C.size() - 1; i >= 0; i--) printf("%d", C[i]);
return 0;
}
else
{
auto C = sub(B, A);
printf("-");
for(int i = C.size() - 1; i >= 0; i--) printf("%d", C[i]);
return 0;
}
return 0;
}
这里呢我们出现了一个
i
f
(
c
h
e
c
k
(
A
,
B
)
)
if(check(A,B))
if(check(A,B))的操作,这是因为我们在sub操作中也是默认A比B大的,如果A比B小,算他们绝对值差,再取相反数即可。
还有的就是前导零操作,在乘除法也同样要用到
乘法
#include <iostream>
#include <vector>
using namespace std;
vector<int> mul(vector<int> &A, vector<int> &B) {
vector<int> C(A.size() + B.size() + 7, 0);
for (int i = 0; i < A.size(); i++)
for (int j = 0; j < B.size(); j++)
C[i + j] += A[i] * B[j];
int t = 0;
for (int i = 0; i < C.size(); i++) {
t += C[i], C[i] = t % 10;
t /= 10;
}
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main() {
string a, b;
cin >> a >> b;
vector<int> A, B;
for (int i = a.size() - 1; i >= 0; i--)
A.push_back(a[i] - '0');
for (int i = b.size() - 1; i >= 0; i--)
B.push_back(b[i] - '0');
auto C = mul(A, B);
for (int i = C.size() - 1; i >= 0; i--)
printf("%d", C[i]);
return 0;
}
高精度乘法唯一特殊的点就是C[i + j] += A[i] * B[j],写几个数用竖式计算即可发现规律。
除法(高/低)
#include<bits/stdc++.h>
using namespace std;
int r;
vector<int> div(vector<int> &A, int b, int &r)
{
vector<int> C;
r = 0;
for (int i = A.size() - 1; i >= 0; i -- )
{
r = r * 10 + A[i];
C.push_back(r / b);
r %= b;
}
reverse(C.begin(), C.end());
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main()
{
string a; int b;
cin >> a >> b;
vector<int> A, B;
for (int i = a.size() - 1; i >= 0; i--)
A.push_back(a[i] - '0');
auto C = div(A, b, r);
for (int i = C.size() - 1; i >= 0; i--)
printf("%d", C[i]);
printf("\n%d\n", r);
return 0;
}
完结
本文介绍了高精度计算的基本算法,包括加法、减法、乘法和除法,并提供了例题传送门。模板使用了STL容器vector,特别处理了前导零的情况,确保计算的准确性。在加法中,特别判定了B的位数大于A的位数的情况;减法中,当A小于B时进行了转换;乘法通过竖式计算找到规律;除法部分完成高精度除法运算。
1119

被折叠的 条评论
为什么被折叠?



