AcWing算法基础课,高精度模板

本文介绍了高精度计算的基本算法,包括加法、减法、乘法和除法,并提供了例题传送门。模板使用了STL容器vector,特别处理了前导零的情况,确保计算的准确性。在加法中,特别判定了B的位数大于A的位数的情况;减法中,当A小于B时进行了转换;乘法通过竖式计算找到规律;除法部分完成高精度除法运算。
摘要由CSDN通过智能技术生成

高精度模板大杂烩

想必大家小学都学过竖式计算吧,高精度就是一种模拟小学生计算的算法

例题传送门

高精度加法
高精度减法
高精度乘法
高精度除法

模板

这里的模板采用了STL容器 v e c t o r vector vector,方便维护最后得到的结果
高精度乘除减法都需要判断前导零

加法
#include <bits/stdc++.h>

using namespace std;

vector<int> add(vector<int> &A,vector<int> &B)
{
    if(B.size() > A.size()) return add(B,A);

    int t = 0;
    vector<int> c;
    for(int i = 0;i < A.size();i ++ )
    {
        t += A[i];
        if(i < B.size()) t += B[i];
        c.push_back(t % 10);
        t /= 10;
    }if(t) c.push_back(t);

    return c;
}

int main()
{
    string a,b;
    cin >> a >> b;
    vector<int> A,B;

    for(int i = a.size() - 1;i >= 0;i -- ) A.push_back(a[i] - '0');
    for(int i = b.size() - 1;i >= 0;i -- ) B.push_back(b[i] - '0');

    auto c = add(A,B);

    for(int i = c.size() - 1;i >= 0;i -- ) cout << c[i];

    return 0;
}

这里是倒序储存,倒序输出
值得一提的是代码的运算特判了 i f ( B . s i z e ( ) > A . s i z e ( ) ) r e t u r n a d d ( B , A ) ; if(B.size() > A.size()) return add(B,A); if(B.size()>A.size())returnadd(B,A);
这是因为我们在后来的运算中,默认A的位数比B大,所以加了一条特判

减法
#include <bits/stdc++.h>

using namespace std;

bool check(vector<int> &A,vector<int> &B)
{
    if(A.size() != B.size()) return A.size() > B.size();
    for(int i = A.size();i >= 0;i -- )
        if(A[i] != B[i]) return A[i] > B[i];
    return true;
}

vector<int> sub(vector<int> &A,vector<int> &B)
{
    int t = 0;
    vector<int> c;
    for(int i = 0;i < A.size() || t;i ++ )
    {
        t = A[i] - t;
        if(i < B.size()) t -= B[i];
        c.push_back((t + 10) % 10);
        if(t < 0) t = 1;
        else t = 0;
    }
    while(c.size() > 1 && c.back() == 0) c.pop_back();
    return c;
}

int main()
{
    string a,b;
    ios::sync_with_stdio(false);
    cin.tie(0),cout.tie(0);
    cin >> a >> b;
    vector<int> A,B;

    for(int i = a.size() - 1;i >= 0;i -- ) A.push_back(a[i] - '0');
    for(int i = b.size() - 1;i >= 0;i -- ) B.push_back(b[i] - '0');

    if (check(A,B)) 
    {
        auto C = sub(A, B);
        for(int i = C.size() - 1; i >= 0; i--) printf("%d", C[i]);
        return 0;
    }
    else
    {
        auto C = sub(B, A);
        printf("-");
        for(int i = C.size() - 1; i >= 0; i--) printf("%d", C[i]);
        return 0;
    }

    return 0;
}

这里呢我们出现了一个 i f ( c h e c k ( A , B ) ) if(check(A,B)) if(check(A,B))的操作,这是因为我们在sub操作中也是默认A比B大的,如果A比B小,算他们绝对值差,再取相反数即可。
还有的就是前导零操作,在乘除法也同样要用到

乘法
#include <iostream>
#include <vector>

using namespace std;

vector<int> mul(vector<int> &A, vector<int> &B) {
    vector<int> C(A.size() + B.size() + 7, 0);

    for (int i = 0; i < A.size(); i++)
        for (int j = 0; j < B.size(); j++)
            C[i + j] += A[i] * B[j];

    int t = 0;
    for (int i = 0; i < C.size(); i++) {
        t += C[i], C[i] = t % 10;
        t /= 10;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back(); 
    return C;
}

int main() {
    string a, b;
    cin >> a >> b;

    vector<int> A, B;
    for (int i = a.size() - 1; i >= 0; i--)
        A.push_back(a[i] - '0');
    for (int i = b.size() - 1; i >= 0; i--)
        B.push_back(b[i] - '0');

    auto C = mul(A, B);

    for (int i = C.size() - 1; i >= 0; i--)
        printf("%d", C[i]);

    return 0;
}

高精度乘法唯一特殊的点就是C[i + j] += A[i] * B[j],写几个数用竖式计算即可发现规律。

除法(高/低)
#include<bits/stdc++.h>

using namespace std;

int r;

vector<int> div(vector<int> &A, int b, int &r)
{
    vector<int> C;
    r = 0;
    for (int i = A.size() - 1; i >= 0; i -- )
    {
        r = r * 10 + A[i];
        C.push_back(r / b);
        r %= b;
    }
    reverse(C.begin(), C.end());
    while (C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

int main() 
{
    string a; int b;
    cin >> a >> b;

    vector<int> A, B;
    for (int i = a.size() - 1; i >= 0; i--)
        A.push_back(a[i] - '0');

    auto C = div(A, b, r);

    for (int i = C.size() - 1; i >= 0; i--)
        printf("%d", C[i]);
    printf("\n%d\n", r);
    
    return 0;
}

完结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值