floyd算法

   

在图论中经常会遇到这样的问题,在一个有向图里,求出任意两个节点之间的最短距离。我们在离散数学、数据结构课上都遇到过这个问题,在计算机网络里介绍网络层的时候好像也遇到过这个问题,记不请了… 但是书本上一律采取的是Dijkstra算法,通过Dijkstra算法可以求出单源最短路径,然后逐个节点利用Dijkstra算法就可以了。不过在这里想换换口味,采取Robert Floyd提出的算法来解决这个问题。下面让我们先把问题稍微的形式化一下:


      如果有一个矩阵D=[d(ij)],其中d(ij)>0表示i城市到j城市的距离。若i与j之间无路可通,那么d(ij)就是无穷大。又有d(ii)=0。编写一个程序,通过这个距离矩阵D,把任意两个城市之间的最短与其行径的路径找出来。
     我们可以将问题分解,先找出最短的距离,然后在考虑如何找出对应的行进路线。如何找出最短路径呢,这里还是用到动态规划的知识,对于任何一个城市而言,i到j的最短距离不外乎存在经过i与j之间的k和不经过k两种可能,所以可以令k=1,2,3,…,n(n是城市的数目),在检查d(ij)与d(ik)+d(kj)的值;在此d(ik)与d(kj)分别是目前为止所知道的i到k与k到j的最短距离,因此d(ik)+d(kj)就是i到j经过k的最短距离。所以,若有d(ij)>d(ik)+d(kj),就表示从i出发经过k再到j的距离要比原来的i到j距离短,自然把i到j的d(ij)重写为d(ik)+d(kj),每当一个k查完了,d(ij)就是目前的i到j的最短距离。重复这一过程,最后当查完所有的k时,d(ij)里面存放的就是i到j之间的最短距离了。所以我们就可以用三个for循环把问题搞定了,但是有一个问题需要注意,那就是for循环的嵌套的顺序:我们可能随手就会写出这样的程序,但是仔细考虑的话,会发现是有问题的。

                     for(int i=0; i<n; i++)
                           for(int j=0; j<n; j++)
                                for(int k=0; k<n; k++)  
    

     问题出在我们太早的把i-k-j的距离确定下来了,假设一旦找到了i-p-j最短的距离后,i到j就相当处理完了,以后不会在改变了,一旦以后有使i到j的更短的距离时也不能再去更新了,所以结果一定是不对的所以应当象下面一样来写程序:

                    for(int k=0; k<n; k++)
                         for(int i=0; i<n; i++)
                              for(int j=0; j<n; j++)

if(d[i][j]>d[i][k] + d[k][j] )    d[i][j] = d[i][k] + d[k][j]  ;   

                                           这里   d[i][k]    d[k][j]后面都会动态更新的    ,所以   d[i][j]  后面也会变化 ,不是一次就能确定的

因此floyd的最外层循环:
for (k = 0; k < n; k++) ...
就是分别求出 A0(i,j), A1(i,j), ..., An(i,j) 

先求出所有 A0(i,j),然后再出所有A1(i,j), ..., 最后求出所有的An(i,j)    (所以内层有两个循环)

    这样作的意义在于固定了k,把所有i到j而经过k的距离找出来,然后象开头所提到的那样进行比较和重写,因为k是在最外层的,所以会把所有的i到j都处理完后,才会移动到下一个k,这样就不会有问题了,看来多层循环的时候,我们一定要当心,否则很容易就弄错了。
     接下来就要看一看如何找出最短路径所行经的城市了,这里要用到另一个矩阵P,它的定义是这样的:p(ij)的值如果为p,就表示i到j的最短行经为i->…->p->j,也就是说p是i到j的最短行径中的j之前的最后一个城市。P矩阵的初值为p(ij)=i。有了这个矩阵之后,要找最短路径就轻而易举了。对于i到j而言找出p(ij),令为p,就知道了路径i->…->p->j;再去找p(ip),如果值为q,i到p的最短路径为i->…->q->p;再去找p(iq),如果值为r,i到q的最短路径为i->…->r->q;所以一再反复,到了某个p(it)的值为i时,就表示i到t的最短路径为i->t,就会的到答案了,i到j的最短行径为i->t->…->q->p->j。因为上述的算法是从终点到起点的顺序找出来的,所以输出的时候要把它倒过来。
     但是,如何动态的回填P矩阵的值呢?回想一下,当d(ij)>d(ik)+d(kj)时,就要让i到j的最短路径改为走i->…->k->…->j这一条路,但是d(kj)的值是已知的,换句话说,就是k->…->j这条路是已知的,所以k->…->j这条路上j的上一个城市(即p(kj))也是已知的,当然,因为要改走i->…->k->…->j这一条路,j的上一个城市正好是p(kj)。所以一旦发现d(ij)>d(ik)+d(kj),就把p(kj)存入p(ij)。










 floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在),floyd算法加入了这个概念

    Ak(i,j):表示从i到j中途不经过索引比k大的点的最短路径

    这个限制的重要之处在于,它将最短路径的概念做了限制,使得该限制有机会满足迭代关系,这个迭代关系就在于研究:假设Ak(i,j)已知,是否可以借此推导出Ak-1(i,j)。

    假设我现在要得到Ak(i,j),而此时Ak(i,j)已知,那么我可以分两种情况来看待问题:1. Ak(i,j)沿途经过点k;2. Ak(i,j)不经过点k。如果经过点k,那么很显然,Ak(i,j) = Ak-1(i,k) + Ak-1(k,j),为什么是Ak-1呢?因为对(i,k)和(k,j),由于k本身就是源点(或者说终点),加上我们求的是Ak(i,j),所以满足不经过比k大的点的条件限制,且已经不会经过点k,故得出了Ak-1这个值。那么遇到第二种情况,Ak(i,j)不经过点k时,由于没有经过点k,所以根据概念,可以得出Ak(i,j)=Ak-1(i,j)。现在,我们确信有且只有这两种情况---不是经过点k,就是不经过点k,没有第三种情况了,条件很完整,那么是选择哪一个呢?很简单,求的是最短路径,当然是哪个最短,求取哪个,故得出式子:

    Ak(i,j) = min( Ak-1(i,j), Ak-1(i,k) + Ak-1(k,j) )


因此floyd的最外层循环:
for (k = 0; k < n; k++) ...
就是分别求出  A0(i,j),  A1(i,j), ...,  An(i,j) 
我屡次写错floyd的程序,今天又写错一次。。尽管它很短,但原理真的很牛比。

只要知道了原理,就不会再写错了!


为了加深对floyd算法的认识,特地搜了一下floyd算法的证明。原来floyd算法的本质是一个动态规划的过程。

状态转移方程:

f[k][i][j]=min(f[k-1][i][j],f[k-1][i][k]+f[k-1][k][j])

f[k][i][j]表示只经过前k个点(包括k),从i到j的最小值。当k从1到n时,就是从i到j的最小值。我们熟悉的用二维数组的写法实际上是对空间的一种压缩。

解释一下:

计算只经过前k个点,从i到j的最小值时,有两种情况需要考虑:经过第k个点和不经过第k个点。经过第k个点则距离应是从i到k的最小值和从k到j的最小值,两个最小值的路径都必须只经过前k-1个点(为什么是k-1而不是k,事实上他们两数值相同,因为起点和终点已经有第k个点,只是在dp的过程中先产生k-1,f[k][i][k]和f[k][k][j]有可能比f[k][i][j]的值晚计算出,就不能在计算f[k][i][j]时用到这两个值)。不经过k的点则距离与只经过前k-1个点时一样。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值